首页> 美国卫生研究院文献>Scientific Reports >Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate
【2h】

Engineered Ureolytic Microorganisms Can Tailor the Morphology and Nanomechanical Properties of Microbial-Precipitated Calcium Carbonate

机译:工程化的溶菌微生物可以定制微生物沉淀碳酸钙的形态和纳米力学性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We demonstrate for the first time that the morphology and nanomechanical properties of calcium carbonate (CaCO3) can be tailored by modulating the precipitation kinetics of ureolytic microorganisms through genetic engineering. Many engineering applications employ microorganisms to produce CaCO3. However, control over bacterial calcite morphology and material properties has not been demonstrated. We hypothesized that microorganisms genetically engineered for low urease activity would achieve larger calcite crystals with higher moduli. We compared precipitation kinetics, morphology, and nanomechanical properties for biogenic CaCO3 produced by two Escherichia coli (E. coli) strains that were engineered to display either high or low urease activity and the native producer Sporosarcina pasteurii. While all three microorganisms produced calcite, lower urease activity was associated with both slower initial calcium depletion rate and increased average calcite crystal size. Both calcite crystal size and nanoindentation moduli were also significantly higher for the low-urease activity E. coli compared with the high-urease activity E. coli. The relative resistance to inelastic deformation, measured via the ratio of nanoindentation hardness to modulus, was similar across microorganisms. These findings may enable design of novel advanced engineering materials where modulus is tailored to the application while resistance to irreversible deformation is not compromised.
机译:我们首次证明,可以通过基因工程通过调节尿素分解微生物的沉淀动力学来调整碳酸钙(CaCO3)的形态和纳米力学性能。许多工程应用利用微生物来产生CaCO3。然而,尚未证明对细菌方解石形态和材料性质的控制。我们假设经过基因工程改造的低脲酶活性微生物将获得具有更高模量的方解石晶体。我们比较了由两种大肠杆菌(E. coli)菌株产生的生物CaCO3的沉淀动力学,形态学和纳米机械性能,这些菌株经过工程改造以显示高或低的脲酶活性,以及​​天然生产者Sporosarcina pasturii。虽然所有三种微生物均产生方解石,但较低的脲酶活性与较慢的初始钙消耗速率和平均方解石晶体尺寸增加有关。与低尿素酶活性的大肠杆菌相比,低尿素酶活性的大肠杆菌的方解石晶体尺寸和纳米压痕模量均显着更高。通过纳米压痕硬度与模量之比测得的对非弹性变形的相对阻力在整个微生物中相似。这些发现可以实现新颖的高级工程材料的设计,其中模量适合于应用,而对不可逆变形的抵抗力不会受到损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号