首页> 美国卫生研究院文献>Scientific Reports >Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal
【2h】

Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

机译:使用非晶态金属实时测量功能合胞体中生物磁矢量场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.
机译:磁场对生物电活动的检测将提供对细胞组织功能状态(即通过细胞间电耦合构建的合胞体)的非侵入性和无菌性评估。在这项研究中,我们通过应用在无磁屏蔽的环境温度下运行的基于非晶态金属的重力电磁传感器,研究了作为典型功能合胞体在肠道肌肉中自发发生的生物电磁波的特性。通过使用带有一对换能器线圈的单根非晶线改善了区分性能。在样品下方约1〜mm处实时记录了高达nT的生物电磁波。四乙基铵(TEA)有助于电磁波反射平滑肌中的电活动。电磁波的方向根据肌肉层和磁传感器的相对角度而改变,表明存在传播的细胞间电流。样品和传感器之间的最初和随后的1µmm间隔使电磁波的大小迅速降低至〜30%。较大的距离效应归因于生物电路的特征,该电路是由两个反向电流隔开的小距离构成的。这项研究提供了一种方法,用于检测由合胞电流产生的生物磁场的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号