首页> 美国卫生研究院文献>Scientific Reports >Graphene oxide and H2 production from bioelectrochemical graphite oxidation
【2h】

Graphene oxide and H2 production from bioelectrochemical graphite oxidation

机译:生物电化学石墨氧化法生产氧化石墨烯和氢气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphene oxide (GO) is an emerging material for energy and environmental applications, but it has been primarily produced using chemical processes involving high energy consumption and hazardous chemicals. In this study, we reported a new bioelectrochemical method to produce GO from graphite under ambient conditions without chemical amendments, value-added organic compounds and high rate H2 were also produced. Compared with abiotic electrochemical electrolysis control, the microbial assisted graphite oxidation produced high rate of graphite oxide and graphene oxide (BEGO) sheets, CO2, and current at lower applied voltage. The resultant electrons are transferred to a biocathode, where H2 and organic compounds are produced by microbial reduction of protons and CO2, respectively, a process known as microbial electrosynthesis (MES). Pseudomonas is the dominant population on the anode, while abundant anaerobic solvent-producing bacteria Clostridium carboxidivorans is likely responsible for electrosynthesis on the cathode. Oxygen production through water electrolysis was not detected on the anode due to the presence of facultative and aerobic bacteria as O2 sinkers. This new method provides a sustainable route for producing graphene materials and renewable H2 at low cost, and it may stimulate a new area of research in MES.
机译:氧化石墨烯(GO)是一种用于能源和环境应用的新兴材料,但主要使用涉及高能耗和危险化学品的化学工艺生产。在这项研究中,我们报道了一种新的生物电化学方法,可在不进行化学修饰的情况下从环境条件下用石墨生产GO,还生产了增值有机化合物和高速率H2。与非生物电化学控制相比,微生物辅助石墨氧化在较低的施加电压下产生了较高的氧化石墨和氧化石墨烯(BEGO)片,CO2和电流。产生的电子被转移到生物阴极,在该阴极中,通过质子和CO2的微生物还原分别产生H2和有机化合物,这一过程称为微生物电合成(MES)。假单胞菌是阳极上的主要种群,而大量产生厌氧溶剂的细菌碳氧化梭菌可能负责阴极上的电合成。由于存在兼性和好氧细菌作为O2沉降片,因此在阳极上未检测到通过水电解产生的氧气。这种新方法为低成本生产石墨烯材料和可再生氢气提供了一条可持续的途径,并可能激发MES研究的新领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号