首页> 美国卫生研究院文献>Scientific Reports >Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis
【2h】

Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

机译:生物启发的等离激元纳米体系结构的混合系统以增强远红外到近红外太阳能光催化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique microanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D microanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.
机译:使用远红外到近红外(NIR)的光将半导体中的燃料转换为电能或将半导体中的电能转换为太阳能,这非常重要,这大约占太阳能的40%。一个主要挑战是开发新的活动促进策略和新的近红外响应基本机制。大自然母亲已经进化出独特的微/纳米结构,可以通过其智能系统智能地捕获远红至近红外光,从而激发了我们进行仿生设计的动力。在这里,我们报告了一种新策略的首次演示,该策略是基于采用自然界的红到近红外响应体系结构来构建高效的生物启发性光催化系统。该系统是通过将集光的等离激元纳米天线受控组装到具有蝴蝶翅膀的3D微米/纳米结构的典型光催化单元上而构成的。实验和时域有限差分(FDTD)模拟证明了结构上明显的远红至近红外光催化增强的结构效应,其起因于(1)增强远红至近红外(700〜1200 nm)收获,直至25%。 (2)将局部表面等离子体激元(LSP)的电场幅度提高到非结构化等离子体激元的电场幅度的3.5倍以上,这促进了电子-空穴对的形成速率,从而大大增强了光催化作用。这项概念验证研究为NIR光催化提供了一种新方法,并有可能指导未来概念上新的NIR响应系统设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号