首页> 美国卫生研究院文献>Scientific Reports >Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material
【2h】

Lithium intercalation mechanism into FeF3·0.5H2O as a highly stable composite cathode material

机译:锂嵌入FeF3·0.5H2O中作为高稳定性复合正极材料的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growing demand for lithium-ion batteries (LIBs) requires investigation of high-performance electrode materials with the advantages of being environmentally friendly and cost-effective. In this study, a nanocomposite of open-pyrochlore-structured FeF3·0.5H2O and reduced graphene oxide (RGO) is synthesized for use as a high-performance cathode in LIBs, where RGO provides high electrical conductivity to the composite material. The morphology of the composite shows that FeF3·0.5H2O spheres are embedded into RGO layers and high-resolution TEM image shows that those spheres are composed of primary nanoparticles with a size of ~5 nm. The cycling performance indicates that the composite electrode delivers an initial high discharge capacity of 223 mAh g−1 at 0.05 C, a rate capability up to a high C-rate of 10 C (47 mAh g−1) and stable cycle performance at 0.05 C (145 mAh g−1 after 100 cycles) and 0.2 C (93 mAh g−1 after 100 cycles) while maintaining high electrochemical reversibility. Furthermore, the responsible electrochemical reaction is investigated using in-situ XRD and synchrotron-based X-ray absorption spectroscopy (XAS), and the XRD results show that FeF3·0.5H2O transitions to an amorphous-like phase through a lithiation process. However, a reversible oxidation change of Fe3+ ↔ Fe2+ is identified by the XAS results.
机译:对锂离子电池(LIB)的需求不断增长,需要对高性能电极材料进行研究,其优点是环保且具有成本效益。在这项研究中,合成了开环烧绿石结构的FeF3·0.5H2O和还原的氧化石墨烯(RGO)的纳米复合材料,用作LIB中的高性能阴极,其中RGO为复合材料提供了高电导率。复合材料的形貌表明FeF3·0.5H2O球嵌入RGO层中,高分辨率TEM图像显示这些球由约5 nm大小的初级纳米颗粒组成。循环性能表明,复合电极在0.05 C时可提供223 mAh g -1 的初始高放电容量,其速率容量可达到10 C的高C速率(47 mAh g > -1 )和稳定的循环性能,在0.05 cyclesC(100次循环后为145 mAh g -1 )和0.2 C(100次循环后为93 mAh g -1 循环),同时保持较高的电化学可逆性。此外,使用原位XRD和基于同步加速器的X射线吸收光谱法(XAS)研究了负责的电化学反应,XRD结果表明FeF3·0.5H2O通过锂化过程转变为非晶态。 XAS结果表明,Fe 3 + ↔Fe 2 + 具有可逆的氧化变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号