首页> 美国卫生研究院文献>Scientific Reports >Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation
【2h】

Electrochemical Evaluations of Fractal Microelectrodes for Energy Efficient Neurostimulation

机译:分形微电极对能量高效神经刺激的电化学评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Advancements in microfabrication has enabled manufacturing of microscopic neurostimulation electrodes with smaller footprint than ever possible. The smaller electrodes can potentially reduce tissue damage and allow better spatial resolution for neural stimulation. Although electrodes of any shape can easily be fabricated, substantial effort have been focused on identification and characterization of new materials and surface morphology for efficient charge injection, while maintaining simple circular or rectangular Euclidean electrode geometries. In this work we provide a systematic electrochemical evaluation of charge injection capacities of serpentine and fractal-shaped platinum microelectrodes and compare their performance with traditional circular microelectrodes. Our findings indicate that the increase in electrode perimeter leads to an increase in maximum charge injection capacity. Furthermore, we found that the electrode geometry can have even more significant impact on electrode performance than having a larger perimeter for a given surface area. The fractal-shaped microelectrodes, despite having smaller perimeter than other designs, demonstrated superior charge injection capacity. Our results suggest that electrode design can significantly affect both Faradaic and non-Faradaic electrochemical processes, which may be optimized to enable a more energy efficient design for neurostimulation.
机译:微加工技术的进步使得能够制造出比以往任何时候都更小的占地面积的微观神经刺激电极。较小的电极可以潜在地减少组织损伤,并为神经刺激提供更好的空间分辨率。尽管可以很容易地制造任何形状的电极,但是为了保持有效的电荷注入,同时保持简单的圆形或矩形欧几里得电极几何形状,已经集中精力进行新材料的鉴定和表征以及表面形态,以进行有效的电荷注入。在这项工作中,我们提供了蛇形和分形铂微电极的电荷注入能力的系统电化学评估,并将其性能与传统的圆形微电极进行了比较。我们的发现表明,电极周长的增加导致最大电荷注入容量的增加。此外,我们发现,对于给定的表面积,电极的几何形状比具有更大的周长对电极性能的影响更大。分形形状的微电极,尽管其周长比其他设计小,但仍具有出色的电荷注入能力。我们的结果表明,电极设计可显着影响法拉第和非法拉第电化学过程,可对其进行优化以实现神经刺激的更节能设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号