首页> 美国卫生研究院文献>Scientific Reports >A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly
【2h】

A biomimicry design for nanoscale radiative cooling applications inspired by Morpho didius butterfly

机译:受Morpho didius蝴蝶启发用于纳米级辐射冷却应用的仿生设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In nature, novel colors and patterns have evolved in various species for survival, recognizability or mating purposes. Investigations of the morphology of various butterfly wings have shown that in addition to the pigmentation, micro and nanostructures within the wings have also allowed better communication systems and the pheromone-producing organs which are the main regulators of the temperature within butterfly wings. Within the blue spectrum (450–495 nm), Morpho didius butterfly exhibit iridescence in their structure-based wings’ color. Inspired by the rich physics behind this concept, we present a designer metamaterial system that has the potential to be used for near-field radiative cooling applications. This biomimicry design involves SiC palm tree-like structures placed in close proximity of a thin film in a vacuum environment separated by nanoscale gaps. The near-field energy exchange is enhanced significantly by decreasing the dimensions of the tree and rotating the free-standing structure by 90 degrees clockwise and bringing it to the close proximity of a second thin film. This exchange is calculated by using newly developed near-field radiative transfer finite difference time domain (NF-RT-FDTD) algorithm. Several orders of enhancement of near-field heat flux within the infrared atmospheric window (8–13 μm bandwidth) are achieved. This spectrally selective enhancement is associated with the geometric variations, the spatial location of the source of excitation and the material characteristics, and can be tuned to tailor strong radiative cooling mechanisms.
机译:在自然界中,为了生存,可识别性或交配目的,各种物种都进化出了新颖的颜色和图案。对各种蝴蝶翅膀形态的研究表明,除了色素沉着外,翅膀内部的微结构和纳米结构还允许更好的通讯系统和产生信息素的器官,这些器官是蝴蝶翅膀内部温度的主要调节者。在蓝色光谱(450-495 nm)内,Morpho didius蝴蝶的翅膀结构呈虹彩。受此概念背后的丰富物理原理的启发,我们提出了一种设计者超材料系统,该系统具有用于近场辐射冷却应用的潜力。这种仿生设计涉及将SiC棕榈树状结构放置在由纳米级间隙隔开的真空环境中紧靠薄膜的位置。通过减小树木的尺寸并将自支撑结构顺时针旋转90度,并使之紧贴第二个薄膜,可以显着增强近场能量交换。通过使用新开发的近场辐射传输有限差分时域(NF-RT-FDTD)算法来计算此交换。在红外大气窗口(8-13μm带宽)内,增强了近场热通量,达到了几个数量级。这种光谱选择性的增强与几何变化,激发源的空间位置和材料特性有关,并且可以进行调整以适应强大的辐射冷却机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号