首页> 美国卫生研究院文献>Nature Communications >Flow-enhanced solution printing of all-polymer solar cells
【2h】

Flow-enhanced solution printing of all-polymer solar cells

机译:全聚合物太阳能电池的流增强溶液印刷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.
机译:溶液涂覆的太阳能电池材料的形态控制提出了限制其器件性能和商业可行性的关键挑战。在这里,我们提出了一种使用全聚合物本体异质结太阳能电池作为模型系统来控制溶液印刷过程中相分离的新概念。我们的方法的关键方面在于基于流动诱导的聚合物结晶的假设,使用微结构化印刷刮刀设计流体流动。我们的流程设计使供体薄膜的结晶度增加了约90%,并减少了微相分离的供体和受体域尺寸。改进的形态增强了在各种印刷条件下太阳能电池设备性能的所有指标,特别是导致更高的短路电流,填充因子,开路电压并显着降低了设备之间的差异。由于其简单性和多功能性,我们希望我们的设计概念能够在全聚合物太阳能电池之外得到广泛的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号