首页> 美国卫生研究院文献>Nature Communications >Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum
【2h】

Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum

机译:电子与金属的相互作用提高了碳化硼负载铂的氧还原活性和稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50–100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.
机译:在酸性介质中催化氧的还原是一项长期挑战。尽管可以通过合金化显着提高最活泼的金属铂的活性,但合金的稳定性仍然值得关注。在这里,我们报道了与商业碳载铂纳米颗粒相比,负载在富含石墨的碳化硼上的铂纳米颗粒在酸性介质中的活性增加了50-100%,并且循环稳定性得到了改善。透射电子显微镜和X射线吸收精细结构分析证实了两种载体上相似的铂纳米颗粒形状,大小,晶格参数和簇堆积,而X射线光电子和吸收光谱表明电子结构发生了变化。这表明纯电子金属-载体相互作用可以显着改善氧还原活性,而不会引起形状,合金或应变效应,并且不会损害稳定性。因此,优化催化剂和载体之间的电子相互作用是用于高级电催化剂的有前途的方法,其中优化催化纳米颗粒本身受到其他问题的约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号