首页> 美国卫生研究院文献>Tissue Engineering. Part A >A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues
【2h】

A Microfabricated Platform to Measure and Manipulate the Mechanics of Engineered Cardiac Microtissues

机译:测量和操纵工程心脏微组织力学的微制造平台。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Engineered myocardial tissues can be used to elucidate fundamental features of myocardial biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged heart tissue in vivo. However, a key limitation is an inability to test the wide range of parameters (cell source, mechanical, soluble and electrical stimuli) that might impact the engineered tissue in a high-throughput manner and in an environment that mimics native heart tissue. Here we used microelectromechanical systems technology to generate arrays of cardiac microtissues (CMTs) embedded within three-dimensional micropatterned matrices. Microcantilevers simultaneously constrain CMT contraction and report forces generated by the CMTs in real time. We demonstrate the ability to routinely produce ∼200 CMTs per million cardiac cells (<1 neonatal rat heart) whose spontaneous contraction frequency, duration, and forces can be tracked. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that both the dynamic force of cardiac contraction as well as the basal static tension within the CMT increased with boundary or matrix rigidity. Cell alignment is, however, reduced within a stiff collagen matrix; therefore, despite producing higher force, CMTs constructed from higher density collagen have a lower cross-sectional stress than those constructed from lower density collagen. We also study the effect of electrical stimulation on cell alignment and force generation within CMTs and we show that the combination of electrical stimulation and auxotonic load strongly improves both the structure and the function of the CMTs. Finally, we demonstrate the suitability of our technique for high-throughput monitoring of drug-induced changes in spontaneous frequency or contractility in CMTs as well as high-speed imaging of calcium dynamics using fluorescent dyes. Together, these results highlight the potential for this approach to quantitatively demonstrate the impact of physical parameters on the maturation, structure, and function of cardiac tissue and open the possibility to use high-throughput, low volume screening for studies on engineered myocardium.
机译:工程心肌组织可用于阐明心肌生物学的基本特征,开发器官型体外模型系统,以及作为工程组织构建体替代体内受损的心脏组织。但是,一个关键的限制是无法测试可能以高通量方式和在模仿天然心脏组织的环境中影响工程组织的各种参数(细胞来源,机械,可溶性和电刺激)。在这里,我们使用微机电系统技术来生成嵌入在三维微图案矩阵中的心脏微组织(CMT)阵列。微悬臂梁同时约束CMT收缩并实时报告CMT产生的力。我们证明了能够自动跟踪每百万个心脏细胞(<1个新生大鼠心脏)产生约200 CMTs的能力,其自发性收缩频率,持续时间和作用力可以追踪。独立地改变悬臂和胶原基质的机械刚度表明,心脏收缩的动态力以及CMT内的基础静态张力都随着边界或基质刚度的增加而增加。但是,在坚硬的胶原蛋白基质中细胞排列减少了;因此,尽管产生更大的力,但是由高密度胶原蛋白构造的CMT具有比由低密度胶原蛋白构造的CMT更低的横截面应力。我们还研究了电刺激对CMT内细胞排列和力产生的影响,并且我们表明,电刺激和声压负荷的组合可大大改善CMT的结构和功能。最后,我们证明了我们的技术适用于高通量监测药物诱发的CMT自发频率或收缩性变化以及使用荧光染料对钙动力学进行高速成像的高通量监测。总之,这些结果突显了这种方法潜在地定量证明物理参数对心脏组织的成熟,结构和功能的影响,并开辟了使用高通量,小体积筛选进行工程心肌研究的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号