首页> 美国卫生研究院文献>Nature Communications >Biological plausibility and stochasticity in scalable VO2 active memristor neurons
【2h】

Biological plausibility and stochasticity in scalable VO2 active memristor neurons

机译:可扩展的VO2活跃忆阻器神经元的生物似然性和随机性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuromorphic networks of artificial neurons and synapses can solve computationally hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units in energy efficiency by a large margin, but deliver much lower chip-scale throughput. The performance-efficiency dilemma for silicon processors may not be overcome by Moore’s law scaling of silicon transistors. Scalable and biomimetic active memristor neurons and passive memristor synapses form a self-sufficient basis for a transistorless neural network. However, previous demonstrations of memristor neurons only showed simple integrate-and-fire behaviors and did not reveal the rich dynamics and computational complexity of biological neurons. Here we report that neurons built with nanoscale vanadium dioxide active memristors possess all three classes of excitability and most of the known biological neuronal dynamics, and are intrinsically stochastic. With the favorable size and power scaling, there is a path toward an all-memristor neuromorphic cortical computer.
机译:人工神经元和突触的神经形态网络可以解决冯·诺依曼(von Neumann)架构无法达到的高能效计算难题。对于图像处理,硅神经形态处理器在能效上要远远优于图形处理单元,但芯片级吞吐量却要低得多。摩尔定律对硅晶体管的缩放可能无法克服硅处理器的性能效率难题。可扩展且仿生的主动忆阻器神经元和被动忆阻器突触形成了无晶体管神经网络的自足基础。但是,以前的忆阻器神经元的演示仅显示了简单的整合和发射行为,而没有揭示生物神经元的丰富动力学和计算复杂性。在这里我们报告说,用纳米级二氧化钒活性忆阻器构建的神经元具有所有三类兴奋性和大多数已知的生物学神经元动力学,并且本质上是随机的。有了有利的尺寸和功率缩放比例,就有了通向全忆阻器神经形态皮质计算机的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号