首页> 美国卫生研究院文献>Proceedings. Mathematical Physical and Engineering Sciences >A minimization principle for the description of modes associated with finite-time instabilities
【2h】

A minimization principle for the description of modes associated with finite-time instabilities

机译:描述与有限时间不稳定性相关的模式的最小化原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

We introduce a minimization formulation for the determination of a finite-dimensional, time-dependent, orthonormal basis that captures directions of the phase space associated with transient instabilities. While these instabilities have finite lifetime, they can play a crucial role either by altering the system dynamics through the activation of other instabilities or by creating sudden nonlinear energy transfers that lead to extreme responses. However, their essentially transient character makes their description a particularly challenging task. We develop a minimization framework that focuses on the optimal approximation of the system dynamics in the neighbourhood of the system state. This minimization formulation results in differential equations that evolve a time-dependent basis so that it optimally approximates the most unstable directions. We demonstrate the capability of the method for two families of problems: (i) linear systems, including the advection–diffusion operator in a strongly non-normal regime as well as the Orr–Sommerfeld/Squire operator, and (ii) nonlinear problems, including a low-dimensional system with transient instabilities and the vertical jet in cross-flow. We demonstrate that the time-dependent subspace captures the strongly transient non-normal energy growth (in the short-time regime), while for longer times the modes capture the expected asymptotic behaviour.
机译:我们介绍了一种最小化公式,用于确定捕捉与瞬态不稳定性相关的相空间方向的有限维,时间相关,正交基础。尽管这些不稳定性具有有限的寿命,但它们可以通过激活其他不稳定性来改变系统动力学,或者通过创建突然的非线性能量传递而导致极端响应,从而发挥关键作用。然而,它们的本质上是短暂的特性使得它们的描述成为特别具有挑战性的任务。我们开发了一个最小化框架,该框架着重于在系统状态附近对系统动力学进行最佳逼近。这种最小化的公式导致了微分方程式的发展,该微分方程式与时间有关,因此可以最佳地近似最不稳定的方向。我们证明了该方法解决两个问题的能力:(i)线性系统,包括强非正态状态下的对流扩散算子以及Orr-Sommerfeld / Squire算子,以及(ii)非线性问题,包括具有瞬态不稳定性的低维系统和横流中的垂直射流。我们证明了时间相关子空间捕获了强烈的瞬态非正常能量增长(在短时间范围内),而更长的时间,模式捕获了预期的渐近行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号