首页> 美国卫生研究院文献>Journal of Experimental Botany >Development of synchronized autonomous and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress
【2h】

Development of synchronized autonomous and self-regulated oscillations in transpiration rate of a whole tomato plant under water stress

机译:水分胁迫下整个番茄植物蒸腾速率的同步自主和自调节振荡的发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Plants respond to many environmental changes by rapidly adjusting their hydraulic conductivity and transpiration rate, thereby optimizing water-use efficiency and preventing damage due to low water potential. A multiple-load-cell apparatus, time-series analysis of the measured data, and residual low-pass filtering methods were used to monitor continuously and analyse transpiration of potted tomato plants (Solanum lycopersicum cv. Ailsa Craig) grown in a temperature-controlled greenhouse during well-irrigated and drought periods. A time derivative of the filtered residual time series yielded oscillatory behaviour of the whole plant's transpiration (WPT) rate. A subsequent cross-correlation analysis between the WPT oscillatory pattern and wet-wick evaporation rates (vertical cotton fabric, 0.14 m2 partly submerged in water in a container placed on an adjacent load cell) revealed that autonomous oscillations in WPT rate develop under a continuous increase in water stress, whereas these oscillations correspond with the fluctuations in evaporation rate when water is fully available. The relative amplitude of these autonomous oscillations increased with water stress as transpiration rate decreased. These results support the recent finding that an increase in xylem tension triggers hydraulic signals that spread instantaneously via the plant vascular system and control leaf conductance. The regulatory role of synchronized oscillations in WPT rate in eliminating critical xylem tension points and preventing embolism is discussed.
机译:植物通过快速调节其水力传导率和蒸腾速率来应对许多环境变化,从而优化用水效率并防止因水势低而造成的破坏。使用多称重传感器设备,对测量数据进行时间序列分析以及残留的低通滤波方法来连续监控并分析在温度控制下生长的盆栽番茄植株(Solanum lycopersicum cv。Ailsa Craig)的蒸腾作用良好灌溉和干旱时期的温室。过滤后的剩余时间序列的时间导数产生了整个植物蒸腾(WPT)速率的振荡行为。 WPT振荡模式与湿芯蒸发速率(垂直棉织物,部分浸没在相邻称重传感器中的容器中的水中的0.14 m 2 )之间的后续互相关分析表明,自发振荡在水分压力持续增加的情况下,WPT速率的变化会逐渐加快,而当水完全可用时,这些振荡与蒸发速率的波动相对应。随着蒸腾速率的降低,这些自主振荡的相对幅度随着水分胁迫而增加。这些结果支持了最近的发现,即木质部张力的增加触发了通过植物血管系统瞬时扩散并控制叶片电导的水力信号。讨论了WPT速率同步振荡在消除关键木质部张力点和防止栓塞中的调节作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号