首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >Physical analysis of an Antarctic ice core—towards an integration of micro- and macrodynamics of polar ice
【2h】

Physical analysis of an Antarctic ice core—towards an integration of micro- and macrodynamics of polar ice

机译:南极冰芯的物理分析—极地冰微观和宏观动力学的整合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microstructures from deep ice cores reflect the dynamic conditions of the drill location as well as the thermodynamic history of the drill site and catchment area in great detail. Ice core parameters (crystal lattice-preferred orientation (LPO), grain size, grain shape), mesostructures (visual stratigraphy) as well as borehole deformation were measured in a deep ice core drilled at Kohnen Station, Dronning Maud Land (DML), Antarctica. These observations are used to characterize the local dynamic setting and its rheological as well as microstructural effects at the EDML ice core drilling site (European Project for Ice Coring in Antarctica in DML). The results suggest a division of the core into five distinct sections, interpreted as the effects of changing deformation boundary conditions from triaxial deformation with horizontal extension to bedrock-parallel shear. Region 1 (uppermost approx. 450 m depth) with still small macroscopic strain is dominated by compression of bubbles and strong strain and recrystallization localization. Region 2 (approx. 450–1700 m depth) shows a girdle-type LPO with the girdle plane being perpendicular to grain elongations, which indicates triaxial deformation with dominating horizontal extension. In this region (approx. 1000 m depth), the first subtle traces of shear deformation are observed in the shape-preferred orientation (SPO) by inclination of the grain elongation. Region 3 (approx. 1700–2030 m depth) represents a transitional regime between triaxial deformation and dominance of shear, which becomes apparent in the progression of the girdle to a single maximum LPO and increasing obliqueness of grain elongations. The fully developed single maximum LPO in region 4 (approx. 2030–2385 m depth) is an indicator of shear dominance. Region 5 (below approx. 2385 m depth) is marked by signs of strong shear, such as strong SPO values of grain elongation and strong kink folding of visual layers. The details of structural observations are compared with results from a numerical ice sheet model (PISM, isotropic) for comparison of strain rate trends predicted from the large-scale geometry of the ice sheet and borehole logging data. This comparison confirms the segmentation into these depth regions and in turn provides a wider view of the ice sheet.This article is part of the themed issue ‘Microdynamics of ice’.
机译:深部冰芯的微观结构非常详细地反映了钻探位置的动态状况以及钻探位置和集水区的热力学历史。在南极Dronning Maud Land(DML)Kohnen站钻的深冰芯中,测量了冰芯参数(晶格优先取向(LPO),晶粒尺寸,晶粒形状),细观结构(视觉地层)以及井眼变形。 。这些观察结果用于表征EDML冰芯钻探现场的局部动力环境及其流变以及微观结构效应(欧洲DML南极冰芯项目)。结果表明岩心被分为五个不同的部分,这被解释为变形边界条件从水平延伸的三轴变形到基岩平行剪切的变化的影响。仍具有较小宏观应变的区域1(最高约450μm深度)主要是气泡压缩,强应变和再结晶局部化。区域2(深度约450–1700 depthm)显示出带状LPO,其带状平面垂直于晶粒伸长,这表明三轴变形以水平延伸为主。在该区域(约1000 m的深度),通过晶粒延伸的倾斜,在形状优先方向(SPO)上观察到了剪切变形的第一条微妙痕迹。区域3(约1700-2030 m的深度)代表三轴变形与剪切主导之间的过渡状态,这在腰带发展到单个最大LPO的过程中以及晶粒延伸的倾斜度增加中变得显而易见。区域4(约2030–2385 m的深度)中充分发展的单个最大LPO是剪切优势的指标。区域5(深度约2385 m以下)的标志是强烈的剪切迹象,例如晶粒伸长的SPO值很高,视觉层的扭结折叠很强。将结构观测的详细信息与数值冰盖模型(PISM,各向同性)的结果进行比较,以比较从冰盖的大规模几何形状和井眼测井数据预测的应变率趋势。这项比较确认了将这些区域细分为多个深度区域的情况,从而提供了更广泛的冰盖视野。本文是主题“冰的微动力学”的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号