首页> 美国卫生研究院文献>Physiological Reviews >Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling
【2h】

Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

机译:醌和细胞色素c氧化还原池之间的电子连接及其在调节线粒体电子传输和氧化还原信号中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
机译:线粒体呼吸是一种重要的生物能量过程,它依赖于四个通过可移动的,可自由扩散的元素功能连接的膜酶复合物的运行:膜中的醌分子和膜间空间中的水溶性细胞色素c。线粒体复合物之一,复合物III(细胞色素bc1或泛醇:细胞色素c氧化还原酶)提供了这两个可扩散氧化还原池之间的电子连接,以完全可逆的方式连接了两电子醌氧化/还原和单电子细胞色素c还原/氧化。该同型二聚酶的几个特征表明,除了其明确的促进质子动力产生的功能外,细胞色素bc1可能是调节电子流的生理学重要点,充当线粒体氧化还原状态的传感器。积极应对生物能状况的变化。这些特征包括以下内容:位于膜相对侧的醌催化位点处的相反氧化还原反应,功能性地将二聚体的四个醌结合位点连接到H形电子传输系统中的单体间电子连接作为产生超氧化物并将其释放到膜间空间的潜力,它可以参与氧化还原信号通路。在这里,我们重点介绍了了解细胞色素bc1如何完成这种调节生理功能的最新进展,有关醌结合位点内的催化和副反应以及通过将这些位点与底物氧化还原池相连的辅因子链进行电子转移的已知信息和未知信息。我们还讨论了线粒体生理学背景下发达的分子机制。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号