首页> 美国卫生研究院文献>Medical Physics >GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation
【2h】

GPU-accelerated Monte Carlo convolution∕superposition implementation for dose calculation

机译:GPU加速的蒙特卡洛卷积∕叠加实现用于剂量计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution∕superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution∕superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage.>Methods: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors’ GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system.>Results: A speedup in the range of 6.7–11.4× is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors’ GPU-based implementation is in good agreement with the results from the quad-core CPU implementation.>Conclusions: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article.
机译:>目的:剂量计算是放射治疗计划系统中的关键组成部分。由于新兴的先进放射治疗技术对剂量计算施加了越来越严格的限制,其性能和准确性对于治疗计划的质量至关重要。通常的做法是选择确定性方法(例如卷积叠加(CS)方法以提高速度)或选择蒙特卡洛(MC)方法以提高准确性。这项工作的目的是通过设计图形处理单元(GPU)来提高混合蒙特卡洛卷积叠加(MCCS)方法的性能,以使该方法在日常使用中切实可行。>方法:尽管MCCS算法结合了MC能量通量生成和CS能量通量传输的优点,但仍不够快,无法用作日常计划工具。为了减轻MC算法的速度问题,作者采用MCCS作为目标方法并实现了基于GPU的版本。为了充分利用GPU的计算能力,修改了MCCS算法以匹配GPU硬件体系结构。将作者在Nvidia GTX260卡上基于GPU的实现与在四核系统上的多线程软件实现的性能进行了比较。>结果:观察到的加速范围为6.7–11.4×对于所用的临床病例。统计波动小于2%,也表明作者基于GPU的实现的准确性与四核CPU实施的结果吻合良好。>结论:该研究表明,GPU在与其他替代方案(例如使用群集机或现场可编程门阵列)相比,这是一种可行且具有成本效益的解决方案,可以满足对计算速度和剂量计算准确性不断增长的需求。但是,使用GPU来加速MC型应用程序也存在固有的局限性,本文还将对此进行详细分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号