首页> 美国卫生研究院文献>Medical Physics >Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: Implications for isocenter localization accuracy
【2h】

Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: Implications for isocenter localization accuracy

机译:使用对幻影制作不精确不敏感的新方法估算CT锥束几何:对等中心点定位精度的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Purpose: Mechanical instabilities that occur during gantry rotation of on-board cone-beam computed tomography (CBCT) imaging systems limit the efficacy of image-guided radiotherapy. Various methods for calibrating the CBCT geometry and correcting errors have been proposed, including some that utilize dedicated fiducial phantoms. The purpose of this work was to investigate the role of phantom fabrication imprecision on the accuracy of a particular CT cone-beam geometry estimate and to test a new method to mitigate errors in beam geometry arising from imperfectly fabricated phantoms.>Methods: The authors implemented a fiducial phantom-based beam geometry estimation following the one described by Cho et al. [Med Phys >32(4), 968–983 (2005)]. The algorithm utilizes as input projection images of the phantom at various gantry angles and provides a full nine parameter beam geometry characterization of the source and detector position and detector orientation versus gantry angle. A method was developed for recalculating the beam geometry in a coordinate system with origin at the source trajectory center and aligned with the axis of gantry rotation, thus making the beam geometry estimation independent of the placement of the phantom. A second CBCT scan with the phantom rotated 180° about its long axis was averaged with the first scan to mitigate errors from phantom imprecision. Computer simulations were performed to assess the effect of 2D fiducial marker positional error on the projections due to image discretization, as well as 3D fiducial marker position error due to phantom fabrication imprecision. Experimental CBCT images of a fiducial phantom were obtained and the algorithm used to measure beam geometry for a Varian Trilogy with an on-board CBCT.>Results: Both simulations and experimental results reveal large sinusoidal oscillations in the calculated beam geometry parameters with gantry angle due to displacement of the phantom from CBCT isocenter and misalignment with the gantry axis, which are eliminated by recalculating the beam geometry in the source coordinate system. Simulations and experiments also reveal an additional source of oscillations arising from fiducial marker position error due to phantom fabrication imprecision that are mitigated by averaging the results with those of a second CBCT scan with phantom rotated. With a typical fiducial marker position error of 0.020 mm (0.001 in.), source and detector position are found in simulations to be within 250 μm of the true values, and detector and gantry angles less than 0.2°. Detector offsets are within 100 μm of the known value. Experimental results verify the efficacy of the second scan in mitigating beam geometry errors, as well as large apparent source∕detector isocenter offsets arising from phantom fabrication imprecision.>Conclusions: The authors have developed and validated a novel fiducial phantom-based CBCT beam geometry estimation algorithm that does not require precise positioning of the phantom at machine isocenter and is insensitive to positional imprecision of fiducial markers within the phantom due to fabrication errors. The method can accurately locate source and detector isocenters even when using an imprecise phantom, which is very important for measurement of isocenter coincidence of the therapy and on-board imaging systems.
机译:>目的:机载锥束计算机断层扫描(CBCT)成像系统的龙门旋转期间发生的机械不稳定性限制了图像引导放射治疗的功效。已经提出了用于校准CBCT几何形状和校正误差的各种方法,包括一些利用专用基准体模的方法。这项工作的目的是研究幻影制作的不精确性对特定CT锥束几何估计的准确性的作用,并测试一种新方法来减轻因制作不当的幻影引起的光束几何误差。>方法:< / strong>作者按照Cho等人的描述进行了基于幻影的波束几何估计。 [Med Phys > 32 (4),968–983(2005)]。该算法将在不同机架角度的模型的投影投影图像用作输入,并提供源和检测器位置以及检测器方向与机架角度的完整九个参数光束几何特征。开发了一种用于重新计算光束系统几何形状的方法,该坐标系统的原点位于源轨迹中心,并且与机架旋转轴对齐,从而使光束几何形状的估计与模型的放置无关。将幻像绕其长轴旋转180°的第二次CBCT扫描与第一次扫描进行平均,以减轻因幻像不精确引起的错误。进行计算机模拟以评估由于图像离散化导致的2D基准标记位置误差对投影的影响,以及由于幻影制作的不精确性而导致的3D基准标记位置误差。获得了基准幻像的实验CBCT图像,并将该算法用于使用车载CBCT测量Varian三部曲的射束几何形状。由于幻影从CBCT等角点的位移以及与机架轴的未对准而导致的具有机架角度的几何参数,可以通过在源坐标系中重新计算梁的几何形状来消除。仿真和实验还揭示了由于幻影制作不精确性而导致的基准标记位置误差引起的另一种振荡源,通过将结果与幻影旋转的第二次CBCT扫描的结果进行平均,可以减轻这种振荡。在典型基准标记位置误差为0.020毫米(0.001英寸)的情况下,在仿真中发现源和检测器的位置在真实值的250μm以内,检测器和机架的角度小于0.2°。检测器偏移量在已知值的100μm以内。实验结果验证了第二次扫描在减轻光束几何形状误差以及因幻影制作不精确而引起的大视源∕探测器等中心线偏移方面的功效。>结论:作者已经开发并验证了一种新型基准幻影。基于CBCT的CBCT射束几何估计算法,不需要精确地将模型定位在机器的等中心点,并且由于制造误差而对模型中基准标记的位置不精确不敏感。即使使用不精确的体模,该方法也可以准确定位源和检测器的等中心点,这对于测量治疗和车载成像系统的等中心点重合度非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号