首页> 美国卫生研究院文献>Journal of Experimental Botany >Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat
【2h】

Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat

机译:将田间表现与可控环境植物成像相结合以确定对小麦缺水胁迫的产量响应潜在的生长和蒸腾的遗传控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning.
机译:低降雨环境下的作物产量是多基因控制下的一个复杂性状,表现出显着的基因型×环境(G×E)相互作用。理解和跟踪此特征的一种方法是通过使用成像平台对大型隔离人群进行表型化,从而将生理学研究与遗传学联系起来。在成像平台和田间均研究了由亲本系发育的小麦群体,这些亲本在水分缺乏下维持产量的机理不同。我们在一个常见的分析流程中结合了表型分析方法,以根据图像估算生物量和叶面积,然后推断出生长量和相对生长率,蒸腾作用和水分利用效率,并将其应用于遗传分析。从平台中发现的几个性状的20个数量性状基因座(QTL)中,有些表现出较强的作用,占染色体1A和1B变异的26%至43%,表明G×E相互作用可以在一个染色体中减少。控制环境并使用动态变量。在平台和现场鉴定出的QTL的共置位在某些基因座上显示出可能的共同遗传基础。在该平台上发现了位于同一地点的QTL,用于平均生长速率,叶片膨胀速率,蒸腾速率和水分利用效率,以及田间的产量,穗数,粒重,粒数和收获指数。这些结果表明,成像平台是基于现场筛选的合适替代方法,可用于对重组系进行表型定位克隆。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号