首页> 美国卫生研究院文献>The Journal of Chemical Physics >A data-integrated method for analyzing stochastic biochemical networks
【2h】

A data-integrated method for analyzing stochastic biochemical networks

机译:一种分析随机生化网络的数据集成方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Variability and fluctuations among genetically identical cells under uniform experimental conditions stem from the stochastic nature of biochemical reactions. Understanding network function for endogenous biological systems or designing robust synthetic genetic circuits requires accounting for and analyzing this variability. Stochasticity in biological networks is usually represented using a continuous-time discrete-state Markov formalism, where the chemical master equation (CME) and its kinetic Monte Carlo equivalent, the stochastic simulation algorithm (SSA), are used. These two representations are computationally intractable for many realistic biological problems. Fitting parameters in the context of these stochastic models is particularly challenging and has not been accomplished for any but very simple systems. In this work, we propose that moment equations derived from the CME, when treated appropriately in terms of higher order moment contributions, represent a computationally efficient framework for estimating the kinetic rate constants of stochastic network models and subsequent analysis of their dynamics. To do so, we present a practical data-derived moment closure method for these equations. In contrast to previous work, this method does not rely on any assumptions about the shape of the stochastic distributions or a functional relationship among their moments. We use this method to analyze a stochastic model of a biological oscillator and demonstrate its accuracy through excellent agreement with CME/SSA calculations. By coupling this moment-closure method with a parameter search procedure, we further demonstrate how a model's kinetic parameters can be iteratively determined in order to fit measured distribution data.
机译:在统一的实验条件下,遗传上相同的细胞之间的变异性和波动起因于生化反应的随机性。了解内生生物系统的网络功能或设计健壮的合成遗传电路需要考虑和分析这种可变性。通常使用连续时间离散状态马尔可夫形式主义来表示生物网络中的随机性,其中使用了化学主方程(CME)及其动力学蒙特卡洛等效物,即随机模拟算法(SSA)。对于许多现实的生物学问题,这两种表示在计算上都是棘手的。在这些随机模型的背景下拟合参数特别具有挑战性,除了非常简单的系统以外,还没有完成。在这项工作中,我们提出,从CME导出的矩方程在按照高阶矩贡献进行适当处理时,代表了一种计算有效的框架,用于估算随机网络模型的动力学速率常数并对其动力学进行后续分析。为此,我们为这些方程式提供了一种实用的数据衍生矩闭合方法。与以前的工作相反,该方法不依赖于关于随机分布的形状或它们的矩之间的函数关系的任何假设。我们使用这种方法来分析生物振荡器的随机模型,并通过与CME / SSA计算的出色一致性来证明其准确性。通过将这种力矩闭合方法与参数搜索过程结合起来,我们进一步证明了如何可以迭代确定模型的动力学参数,以适应所测得的分布数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号