首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
【2h】

Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking

机译:步行过程中神经肌肉动力学和膝盖力学的共同仿真

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study introduces a framework for co-simulating neuromuscular dynamics and knee joint mechanics during gait. A knee model was developed that included 17 ligament bundles and a representation of the distributed contact between a femoral component and tibial insert surface. The knee was incorporated into a forward dynamics musculoskeletal model of the lower extremity. A computed muscle control algorithm was then used to modulate the muscle excitations to drive the model to closely track measured hip, knee, and ankle angle trajectories of a subject walking overground with an instrumented knee replacement. The resulting simulations predicted the muscle forces, ligament forces, secondary knee kinematics, and tibiofemoral contact loads. Model-predicted tibiofemoral contact forces were of comparable magnitudes to experimental measurements, with peak medial (1.95 body weight (BW)) and total (2.76 BW) contact forces within 4–17% of measured values. Average root-mean-square errors over a gait cycle were 0.26, 0.42, and 0.51 BW for the medial, lateral, and total contact forces, respectively. The model was subsequently used to predict variations in joint contact pressure that could arise by altering the frontal plane joint alignment. Small variations (±2 deg) in the alignment of the femoral component and tibial insert did not substantially affect the location of contact pressure, but did alter the medio-lateral distribution of load and internal tibia rotation in swing. Thus, the computational framework can be used to virtually assess the coupled influence of both physiological and design factors on in vivo joint mechanics and performance.
机译:这项研究介绍了一种用于在步态中共同模拟神经肌肉动力学和膝关节力学的框架。膝关节模型已开发,包括17条韧带束,并代表了股骨组件和胫骨插入表面之间的分布式接触。膝盖被合并到下肢的前向动力学肌肉骨骼模型中。然后,使用计算出的肌肉控制算法来调制肌肉刺激,以驱动模型密切跟踪在地面上用器械置换膝关节行走的受试者的髋,膝和踝角度轨迹。所得的模拟预测了肌肉力量,韧带力量,继发性膝关节运动学和胫股接触负荷。模型预测的胫股接触力与实验测量值相当,中间峰值(1.95体重(BW))和总接触力(2.76 BW)在测量值的4-17%之内。步态周期中内侧,外侧和总接触力的平均均方根误差分别为0.26、0.42和0.51 BW。随后,该模型用于预测可能因改变额平面关节对齐而引起的关节接触压力的变化。股骨组件和胫骨插入物对齐的微小变化(±2度)基本上不会影响接触压力的位置,但会改变负荷的中外侧分布和挥杆时胫骨内部旋转。因此,该计算框架可用于虚拟评估生理因素和设计因素对体内关节力学和性能的耦合影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号