首页> 美国卫生研究院文献>FEMS Yeast Research >Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase
【2h】

Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase

机译:通过天然己糖转运蛋白将放射性标记的GlcNAc吸收到酿酒酵母中并在体内将其掺入表达异源GlcNAc激酶的细胞中的GPI前体中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Yeast glycan biosynthetic pathways are commonly studied through metabolic incorporation of an exogenous radiolabeled compound into a target glycan. In Saccharomyces cerevisiae glycosylphosphatidylinositol (GPI) biosynthesis, [3H]inositol has been widely used to identify intermediates that accumulate in conditional GPI synthesis mutants. However, this approach also labels non-GPI lipid species that overwhelm detection of early GPI intermediates during chromatography. In this study, we show that despite lacking the ability to metabolize N-acetylglucosamine (GlcNAc), S. cerevisiae is capable of importing low levels of extracellular GlcNAc via almost all members of the hexose transporter family. Furthermore, expression of a heterologous GlcNAc kinase gene permits efficient incorporation of exogenous [14C]GlcNAc into nascent GPI structures in vivo, dramatically lowering the background signal from non-GPI lipids. Utilizing this new method with several conditional GPI biosynthesis mutants, we observed and characterized novel accumulating lipids that were not previously visible using [3H]inositol labeling. Chemical and enzymatic treatments of these lipids indicated that each is a GPI intermediate likely having one to three mannoses and lacking ethanolamine phosphate (Etn-P) side-branches. Our data support a model of yeast GPI synthesis that bifurcates after the addition of the first mannose and that includes a novel branch that produces GPI species lacking Etn-P side-branches.
机译:酵母聚糖的生物合成途径通常是通过将外源放射性标记化合物代谢掺入目标聚糖中来研究的。在酿酒酵母糖基磷脂酰肌醇(GPI)的生物合成中,[ 3 H]肌醇已广泛用于鉴定在条件性GPI合成突变体中积累的中间体。但是,这种方法也标记了非GPI脂质种类,在色谱分析过程中压倒了早期GPI中间体的检测。在这项研究中,我们表明,尽管缺乏代谢N-乙酰氨基葡糖(GlcNAc)的能力,酿酒酵母仍能够通过己糖转运蛋白家族的几乎所有成员导入低水平的细胞外GlcNAc。此外,异源GlcNAc激酶基因的表达允许体内有效地将外源[ 14 C] GlcNAc掺入新生的GPI结构中,从而大大降低了非GPI脂质的背景信号。利用这种新方法与几个条件性GPI生物合成突变体,我们观察并表征了使用[ 3 H]肌醇标记以前不可见的新型累积脂质。这些脂质的化学和酶处理表明,每种脂质都是GPI中间体,可能具有1-3个甘露糖,并且缺少乙醇胺磷酸酯(Etn-P)侧支。我们的数据支持了酵母GPI合成的模型,该模型在添加第一个甘露糖后会分叉,并且包括一个新的分支,该分支会产生缺少Etn-P侧支的GPI物种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号