首页> 美国卫生研究院文献>Antioxidants Redox Signaling >The Lung Alveolar Lipofibroblast: An Evolutionary Strategy Against Neonatal Hyperoxic Lung Injury
【2h】

The Lung Alveolar Lipofibroblast: An Evolutionary Strategy Against Neonatal Hyperoxic Lung Injury

机译:肺泡肺成纤维细胞:新生儿高氧肺损伤的进化策略。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Significance: Oxygen, the main mode of support for premature infants with immature lungs, can cause toxicity by producing reactive oxygen species (ROS) that disrupt homeostasis; yet, these same molecules were entrained to promote vertebrate lung phylogeny. By providing a deeper understanding of this paradox, we propose physiologically rational strategies to prevent chronic lung disease (CLD) of prematurity. >Recent Advances: To prevent neonatal hyperoxic lung damage biologically, we have exploited the alveolar defense mechanism(s) that evolutionarily evolved to combat increased atmospheric oxygen during the vertebrate water to land transition. >Critical Issues: Over the course of vertebrate lung evolution, ROS promoted the formation of lipofibroblasts, specialized adepithelial cells, which protect the alveoli against oxidant injury; peroxisome proliferator-activated receptor gamma (PPARγ), the master switch for lipofibroblast differentiation, prevents such oxidant lung injury, both by directly promoting mesodermal differentiation and its antioxidant defenses, and indirectly by stimulating the developmental epithelial–mesenchymal paracrine interactions that have physiologically determined lung surfactant production in accord with the lung's phylogenetic adaptation to atmospheric oxygen, preventing Respiratory Distress Syndrome at birth. >Future Directions: The molecular strategy (PPARγ agonists) to prevent CLD of prematurity, proposed by us, although seems to be robust, effective, and safe under experimental conditions, it awaits detailed pharmacokinetic and pharmacodynamic studies for its safe and effective clinical translation to human infants. Antioxid. Redox Signal. 21, 1893–1904.
“I have procured air [oxygen]…between five and six times as good as the best common air that I have ever met with.”—Joseph Priestley, 1775
class="head no_bottom_margin" id="s001title">IntroductionOxygen therapy is one of the main supportive modalities that is instituted to keep premature infants alive. In view of the compelling experimental and clinical evidence for the involvement of oxidant and antioxidant imbalance in many morbidities associated with prematurity, for example, the chronic lung disease (CLD) of prematurity or bronchopulmonary dysplasia (BPD), retinopathy of prematurity, intra/periventricular hemorrhage, and necrotizing enterocolitis, the safety of this practice has recently been called into question yet again (). The mechanistic basis for free radical involvement in these disorders is that free oxidant radicals are formed too rapidly to be detoxified by the limited antioxidant defenses of the premature infant, with resultant tissue-specific damage. In contrast to the conventional approach to this problem, we will focus on the dyshomeostasis of the preterm alveolus as a failed evolutionary mechanism (), which allows us to consider interventions based on phylogenetic adaptations of the lung to atmospheric oxygen.The fetus develops in a relatively hypoxic environment in utero, its adaptive responses well suited to the relatively low fetal oxygen saturation state, but ill-suited for a smooth and safe transition of the prematurely delivered infant to extrauterine life in a relatively hyperoxic environment. Although there are plenty of animal data suggesting the developmental increases in the expression of antioxidant enzymes during fetal lung development, with the exception of limited data supporting a developmental increase in the expression of lung catalase activity, there are very few human studies that have directly examined the expression of antioxidant enzymes during human lung development (). In fact, some studies have failed to demonstrate any late fetal surges in pulmonary superoxide dismutase and glutathione peroxidase activities in human tissues (). On the other hand, there is no doubt that significantly lower levels of antioxidant enzymes have been observed in many studies in premature infants, and their impaired ability to adequately upregulate antioxidant enzymes in response to oxidant stresses, making them highly susceptible to oxidant injury. Therefore, premature infants are almost certainly developmentally unprepared for extrauterine life in an oxygen-rich environment, and exhibit a unique sensitivity to oxidant injury. Furthermore, the greater the prematurity, the higher is the associated risk of oxidant injury.
机译:>意义:氧气是肺部未成熟早产婴儿的主要支持方式,它会通过产生破坏稳态的活性氧(ROS)来引起毒性。然而,这些相同的分子却被带动以促进脊椎动物的肺系统发育。通过更深入地了解这一悖论,我们提出了生理上合理的策略来预防早产的慢性肺部疾病(CLD)。 >最近的进展:为了从生物学上防止新生儿高氧性肺损伤,我们利用了肺泡防御机制,该机制在脊椎动物的水向陆地过渡过程中逐渐进化为与增加的大气氧气作斗争。 >关键问题:在脊椎动物的肺部进化过程中,ROS促进了脂肪成纤维细胞(专门的上皮细胞)的形成,从而保护肺泡免受氧化损伤;过氧化物酶体增殖物激活受体γ(PPARγ)是脂肪成纤维细胞分化的主要开关,它通过直接促进中胚层分化及其抗氧化防御作用,以及通过刺激发育上皮-间充质旁分泌相互作用而间接地预防了这种氧化性肺损伤表面活性剂的产生符合肺对大气中氧气的系统发育适应性,可预防出生时的呼吸窘迫综合征。 >未来方向:我们提出的防止早产CLD的分子策略(PPARγ激动剂)尽管在实验条件下似乎是可靠,有效和安全的,但仍在等待详细的药代动力学和药效学研究对人类婴儿的安全有效的临床翻译。抗氧化。氧化还原信号。 1891年1月21日至1904年。
“我获得的空气[氧气]…是我遇到过的最佳普通空气的五到六倍。”-约瑟夫·普里斯特利,1775年,氧气疗法是为维持早产儿的生命而建立的主要支持方式之一。鉴于令人信服的实验和临床证据表明,氧化剂和抗氧化剂的失衡参与了许多与早产有关的疾病,例如,早产或支气管肺发育不良(BPD)的慢性肺病(CLD),早产的视网膜病变,房内/脑室出血和坏死性小肠结肠炎,最近再次质疑这种做法的安全性()。自由基参与这些疾病的机理基础是,自由基的形成太快而无法通过早产婴儿有限的抗氧化剂防御作用进行解毒,从而导致组织特异性损伤。与解决该问题的常规方法相反,我们将重点放在早产牙槽的动态平衡上作为失败的进化机制(),这使我们可以考虑基于肺对大气氧的系统发育适应性进行干预。在子宫内处于相对低氧的环境中,其适应性反应非常适合相对较低的胎儿血氧饱和度状态,但不适用于在相对高氧的环境中将早产婴儿顺利安全地过渡到宫外生活。尽管有大量的动物数据表明胎儿肺发育过程中抗氧化酶表达的发育增加,但有限的数据支持肺过氧化氢酶活性表达的发育增加,但很少有人类研究直接检查过人肺发育过程中抗氧化酶的表达()。实际上,一些研究未能证明任何晚期胎儿在人体组织中的肺超氧化物歧化酶和谷胱甘肽过氧化物酶活性增高()。另一方面,毫无疑问,在早产儿的许多研究中已观察到抗氧化酶的水平显着降低,并且抗氧化酶响应氧化应激而充分上调抗氧化酶的能力受损,从而使其极易受到氧化损伤。因此,几乎可以肯定的是,早产儿在富氧环境中对子宫外的生活没有发育准备,并且对氧化损伤表现出独特的敏感性。此外,过早的发生,氧化损伤的相关风险也就越高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号