首页> 美国卫生研究院文献>Antioxidants Redox Signaling >Nitric Oxide Regulates Skeletal Muscle Fatigue Fiber Type Microtubule Organization and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms
【2h】

Nitric Oxide Regulates Skeletal Muscle Fatigue Fiber Type Microtubule Organization and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms

机译:一氧化氮通过cGMP依赖性机制调节骨骼肌疲劳纤维类型微管组织和线粒体ATP合成效率。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

>Aim: Skeletal muscle nitric oxide–cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle.>Results: GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1−/− muscle. Functional analyses of GC1−/− muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA–IIX fiber balance. Force deficits in GC1−/− muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure.>Innovation: GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics.>Conclusions: These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966–985.
机译:>目标:在Duchenne和Becker肌营养不良症中,骨骼肌一氧化氮-环鸟苷单磷酸(NO-cGMP)途径受损,部分原因是nNOSμ降低​​和可溶性鸟苷酸环化酶(GC)活性降低。但是,GC功能和骨骼肌GC活性降低的后果尚不清楚。在本研究中,我们探索了GC和NO-cGMP信号在骨骼肌中的功能。>结果: GC1(而非GC2)在氧化性肌肉中的表达高于糖酵解性肌肉。 GC1被发现在具有nNOSμ的复合物中,并靶向高尔基复合体和神经肌肉接头处的nNOS区域。在不存在nNOS的情况下,基线GC活性和GC激动剂反应性降低。结构分析表明,GC1 -/-肌肉中微管的方向异常。 GC1 -/-肌肉的功能分析显示,疲劳强度降低和运动后恢复力增强,这不是由于IIA-IIX型纤维平衡的变化所致。静止线粒体三磷酸腺苷(ATP)合成的缺陷也不会导致GC1 -/-肌肉的力量不足。但是,增加昔多芬的肌肉cGMP会降低ATP的合成效率和能力,而不会影响线粒体含量或超微结构。>创新: GC可能是减轻肌肉疲劳的新目标,NO-cGMP信号可能发挥重要作用>结论:这些发现表明,GC活性是nNOS依赖性的,肌肉对GC表达的特异性控制和不同的GC靶向作用可能促进了NO-cGMP信号的多样性。他们建议nNOS部分地通过GC1调节肌肉纤维类型,微管组织,易疲劳性和运动后力恢复,并建议NO-cGMP途径可能调节线粒体ATP的合成效率。抗氧化。氧化还原信号。 26,966–985。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号