首页> 美国卫生研究院文献>Chaos >Incorporating inductances in tissue-scale models of cardiac electrophysiology
【2h】

Incorporating inductances in tissue-scale models of cardiac electrophysiology

机译:将电感合并到心脏电生理的组织比例模型中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm’s law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton–Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.
机译:在心脏电生理的标准模型中,包括双域和单域模型,局部扰动可以无限速度传播。我们通过开发双曲线双域模型来解决这种不切实际的特性,该模型基于欧姆定律的一般化和通量的Cattaneo型模型。此外,在细胞内和细胞外电导率张量具有相同的各向异性比的情况下,我们获得了一个双曲单畴模型。在一个空间维度上,双曲单畴模型等效于包含轴向电感的电缆模型,并且Cattaneo通量的弛豫时间与这些电感严格相关。单纯的线性分析表明,电感可以忽略不计,但是心脏电生理模型是高度非线性的,线性预测可能无法捕获完全非线性的动力学。实际上,与线性分析相反,我们表明,对于简单的非线性离子模型,对于较小且中等的弛豫时间值,可以获得传导速度的提高。用生物学上详细的离子模型也证明了类似的行为。使用Fenton-Karma模型以及低阶有限元空间离散化,我们对标准单域模型和双曲单域模型之间的差异进行了数值分析。在一个简单的基准测试中,我们显示了当使用相对粗略的空间离散化时,抛物线模型和双曲线模型中,纤维相对于网格的对齐方式强烈影响了动作电位的传播。传导速度的准确预测需要单个心脏细胞数量级的计算网格间距。我们还在左心房的解剖学详细模型中比较了螺旋破裂和心房纤颤情况下的两种配方,并研究了细胞内和细胞外电感对虚拟电极现象的影响。

著录项

  • 期刊名称 Chaos
  • 作者单位
  • 年(卷),期 -1(27),9
  • 年度 -1
  • 页码 093926
  • 总页数 18
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号