首页> 美国卫生研究院文献>Brain Connectivity >Role of Ongoing Intrinsic Activity of Neuronal Populations for Quantitative Neuroimaging of Functional Magnetic Resonance Imaging–Based Networks
【2h】

Role of Ongoing Intrinsic Activity of Neuronal Populations for Quantitative Neuroimaging of Functional Magnetic Resonance Imaging–Based Networks

机译:基于功能性磁共振成像网络的神经元群体持续进行的内在活动对定量神经成像的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A primary objective in neuroscience is to determine how neuronal populations process information within networks. In humans and animal models, functional magnetic resonance imaging (fMRI) is gaining increasing popularity for network mapping. Although neuroimaging with fMRI—conducted with or without tasks—is actively discovering new brain networks, current fMRI data analysis schemes disregard the importance of the total neuronal activity in a region. In task fMRI experiments, the baseline is differenced away to disclose areas of small evoked changes in the blood oxygenation level-dependent (BOLD) signal. In resting-state fMRI experiments, the spotlight is on regions revealed by correlations of tiny fluctuations in the baseline (or spontaneous) BOLD signal. Interpretation of fMRI-based networks is obscured further, because the BOLD signal indirectly reflects neuronal activity, and difference/correlation maps are thresholded. Since the small changes of BOLD signal typically observed in cognitive fMRI experiments represent a minimal fraction of the total energy/activity in a given area, the relevance of fMRI-based networks is uncertain, because the majority of neuronal energy/activity is ignored. Thus, another alternative for quantitative neuroimaging of fMRI-based networks is a perspective in which the activity of a neuronal population is accounted for by the demanded oxidative energy (CMRO2). In this article, we argue that network mapping can be improved by including neuronal energy/activity of both the information about baseline and small differences/fluctuations of BOLD signal. Thus, total energy/activity information can be obtained through use of calibrated fMRI to quantify differences of ΔCMRO2 and through resting-state positron emission tomography/magnetic resonance spectroscopy measurements for average CMRO2.
机译:神经科学的主要目标是确定神经元群体如何处理网络内的信息。在人类和动物模型中,功能磁共振成像(fMRI)在网络映射中越来越受欢迎。尽管使用fMRI进行的神经成像(无论是否执行任务)都在积极地发现新的大脑网络,但是当前的fMRI数据分析方案忽略了该区域中整个神经元活动的重要性。在功能性fMRI实验中,将基线相差以显示血液氧合水平依赖性(BOLD)信号的微小诱发变化区域。在静止状态fMRI实验中,聚光灯聚焦在基线(或自发)BOLD信号的微小波动相关的区域上。基于fMRI的网络的解释会进一步模糊,因为BOLD信号间接反映了神经元的活动,并且差异/相关图被设置了阈值。由于在认知功能磁共振成像实验中通常观察到的BOLD信号的微小变化代表了给定区域内总能量/活动的最小部分,因此基于功能磁共振成像的网络的相关性尚不确定,因为忽略了大多数神经元能量/活动。因此,基于fMRI的网络的定量神经成像的另一种选择是一种观点,其中神经元群体的活动由所需的氧化能(CMRO2)来解释。在本文中,我们认为可以通过包含有关基线信息和BOLD信号的微小差异/波动的神经元能量/活动来改善网络映射。因此,总能量/活性信息可通过使用校准的fMRI来量化ΔCMRO2的差异以及通过对平均CMRO2的静止状态正电子发射断层扫描/磁共振波谱测量获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号