首页> 美国卫生研究院文献>Brain Behavior and Evolution >Nasonia Parasitic Wasps Escape from Hallers Rule by Diphasic Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations
【2h】

Nasonia Parasitic Wasps Escape from Hallers Rule by Diphasic Partially Isometric Brain-Body Size Scaling and Selective Neuropil Adaptations

机译:Nasonia寄生黄蜂通过两相部分等距的脑部大小缩放和选择性Neuropil适应摆脱了Haller规则

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Haller's rule states that brains scale allometrically with body size in all animals, meaning that relative brain size increases with decreasing body size. This rule applies both on inter- and intraspecific comparisons. Only 1 species, the extremely small parasitic wasp Trichogramma evanescens, is known as an exception and shows an isometric brain-body size relation in an intraspecific comparison between differently sized individuals. Here, we investigated if such an isometric brain-body size relationship also occurs in an intraspecific comparison with a slightly larger parasitic wasp, Nasonia vitripennis, a species that may vary 10-fold in body weight upon differences in levels of scramble competition during larval development. We show that Nasonia exhibits diphasic brain-body size scaling: larger wasps scale allometrically, following Haller's rule, whereas the smallest wasps show isometric scaling. Brains of smaller wasps are, therefore, smaller than expected and we hypothesized that this may lead to adaptations in brain architecture. Volumetric analysis of neuropil composition revealed that wasps of different sizes differed in relative volume of multiple neuropils. The optic lobes and mushroom bodies in particular were smaller in the smallest wasps. Furthermore, smaller brains had a relatively smaller total neuropil volume and larger cellular rind than large brains. These changes in relative brain size and brain architecture suggest that the energetic constraints on brain tissue outweigh specific cognitive requirements in small Nasonia wasps.
机译:哈勒法则指出,在所有动物中,大脑都与体长呈异形变化,这意味着相对脑的大小随体大小的减小而增加。该规则适用于种间和种内比较。只有一种物种,极小的寄生黄蜂Trichogramma evanescens被称为例外,并且在不同大小的个体之间进行种内比较时显示出等距的脑-体大小关系。在这里,我们调查了这种等距的脑-体大小关系是否也发生在与一个稍大的寄生黄蜂(Nasonia vitripennis)的种内比较中。 。我们显示,纳索尼亚(Nasonia)表现出两相性的大脑-身体大小缩放:遵循哈勒法则,较大的黄蜂在等轴测图中缩放,而最小的黄蜂显示等轴测缩放。因此,小黄蜂的大脑比预期的要小,我们假设这可能导致大脑结构的适应。对神经pil成分的体积分析表明,不同大小的黄蜂的多个神经pil的相对体积不同。在最小的黄蜂中,尤其是视瓣和蘑菇体较小。此外,较小的大脑比较大的大脑具有相对较小的总神经纤维体积和较大的细胞外皮。相对大脑大小和大脑结构的这些变化表明,在小型Nasonia黄蜂中,对大脑组织的能量约束超过了特定的认知要求。

著录项

相似文献

  • 外文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号