首页> 美国卫生研究院文献>Biointerphases >Bacterially driven cadmium sulfide precipitation on porous membranes: Toward platforms for photocatalytic applications
【2h】

Bacterially driven cadmium sulfide precipitation on porous membranes: Toward platforms for photocatalytic applications

机译:细菌驱动的硫化镉在多孔膜上的沉淀:面向光催化应用的平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The emerging field of biofabrication capitalizes on nature's ability to create materials with a wide range of well-defined physical and electronic properties. Particularly, there is a current push to utilize programmed, self-organization of living cells for material fabrication. However, much research is still necessary at the interface of synthetic biology and materials engineering to make biofabrication a viable technique to develop functional devices. Here, the authors exploit the ability of Escherichia coli to contribute to material fabrication by designing and optimizing growth platforms to direct inorganic nanoparticle (NP) synthesis, specifically cadmium sulfide (CdS) NPs, onto porous polycarbonate membranes. Additionally, current, nonbiological, chemical synthesis methods for CdS NPs are typically energy intensive and use high concentrations of hazardous cadmium precursors. Using biosynthesis methods through microorganisms could potentially alleviate these issues by precipitating NPs with less energy and lower concentrations of toxic precursors. The authors adopted extracellular precipitation strategies to form CdS NPs on the membranes as bacterial/membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, the authors demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of these composites for eventual translation to device development. If combined with the genetically programmed self-organization of cells, this approach promises to directly pattern CdS nanostructures on solid supports.
机译:生物制造的新兴领域充分利用了自然界创造具有广泛定义的物理和电子特性的材料的能力。特别地,当前正在努力利用活细胞的编程的自组织来进行材料制造。但是,在合成生物学和材料工程的接口上仍然需要进行大量研究,以使生物制造成为开发功能器件的可行技术。在这里,作者通过设计和优化生长平台将无机纳米颗粒(NP)合成,特别是硫化镉(CdS)NPs引导到多孔聚碳酸酯膜上,来利用大肠杆菌对材料制造做出贡献的能力。另外,当前的CdS NPs的非生物化学合成方法通常需要大量能量,并使用高浓度的危险镉前体。通过微生物使用生物合成方法,可以通过沉淀能量更少且浓度较低的有毒前体的NP来缓解这些问题。作者采用细胞外沉淀策略在膜上以细菌/膜复合物的形式形成CdS NP,并通过光谱和成像方法(包括能量分散光谱,扫描和透射电子显微镜)对它们进行了表征。通过改变添加镉前体的时间,该方法使我们能够控制整个层状细菌/膜复合物中NP沉淀的定位。此外,作者证明了使用CdS功能化的多孔膜对甲基橙进行光降解,从而证实了这些复合材料的光催化性能,最终可转化为器件开发。如果结合细胞的遗传程序自组织,这种方法有望在固体支持物上直接图案化CdS纳米结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号