首页> 美国卫生研究院文献>AIP Advances >Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube
【2h】

Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube

机译:带有多阳极光电倍增管的非扫描多焦点多光子显微镜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.
机译:多焦点多光子显微镜(MMM)通过并行化激发过程来提高点扫描方法的成像速度。 MMM的早期版本依靠成像探测器来同时记录多个病灶的发射信号。对于许多混浊的生物样本,发射光子的散射会导致图像模糊,并降低信噪比(SNR)。我们最近已经证明,以去扫描配置放置的多阳极光电倍增管(MAPMT)可以有效地将来自每个焦点的散射发射光子收集到其相应的阳极中,从而显着提高高散射标本的图像SNR。不幸的是,经过扫描的MMM具有更长的检测路径,导致大量发射光子损失。取消扫描的几何形状中的光学设计约束进一步导致显着的光学像差,尤其是对于大视场(FOV),高NA物镜。在这里,我们介绍了一种基于MAPMT的未取消扫描的MMM,它基本上克服了大多数缺点。我们表明,由于散射光子的存在,我们在有限的图像SNR降低的情况下将信号效率提高了四倍。激发焦点也可以分布得更宽,以最小的像差覆盖物镜的整个FOV。该系统的性能通过对活小鼠大脑深处的中间神经元形态结构进行成像来证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号