首页> 美国卫生研究院文献>Acta Crystallographica. Section D Structural Biology >Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing
【2h】

Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing

机译:我可以通过SAD分步来解决我的结构吗? SAD相位调整中的异常信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.
机译:SAD调相方法的关键挑战是解决异常信噪比低时的结构。提出了一个简单的理论框架,用于描述异常差异的测量以及在SAD实验中产生的有用的异常相关性和异常信号。在此,有用的异常相关被定义为异常差异与来自异常子结构的理想异常差异的相关。有用的异常相关性反映了数据的准确性和缺少次要站点。一旦确定了子结构,有用的异常相关也反映了可用于估计晶体相的信息。相反,反常信号(反常子结构中原子坐标处模型相变反常傅立叶的峰值高度)反映了子结构中每个位置的可用信息,并且与寻找子结构的能力有关。理论分析表明,异常信号的期望值是有用的异常相关性,数据集中唯一反射次数与子结构中位点数量之比的平方根和一个函数的乘积。随子结构中原子的原子位移因子值的增加而减小。这意味着在SAD实验中找到子结构的能力会因数据质量高和子结构中位点的反射率高而增加,而由于子结构的原子位移高而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号