首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Plasticity of cerebellar Purkinje cells in behavioral training of body balance control
【2h】

Plasticity of cerebellar Purkinje cells in behavioral training of body balance control

机译:小脑浦肯野细胞可塑性在身体平衡控制行为训练中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural responses to sensory inputs caused by self-generated movements (reafference) and external passive stimulation (exafference) differ in various brain regions. The ability to differentiate such sensory information can lead to movement execution with better accuracy. However, how sensory responses are adjusted in regard to this distinguishability during motor learning is still poorly understood. The cerebellum has been hypothesized to analyze the functional significance of sensory information during motor learning, and is thought to be a key region of reafference computation in the vestibular system. In this study, we investigated Purkinje cell (PC) spike trains as cerebellar cortical output when rats learned to balance on a suspended dowel. Rats progressively reduced the amplitude of body swing and made fewer foot slips during a 5-min balancing task. Both PC simple (SSs; 17 of 26) and complex spikes (CSs; 7 of 12) were found to code initially on the angle of the heads with respect to a fixed reference. Using periods with comparable degrees of movement, we found that such SS coding of information in most PCs (10 of 17) decreased rapidly during balance learning. In response to unexpected perturbations and under anesthesia, SS coding capability of these PCs recovered. By plotting SS and CS firing frequencies over 15-s time windows in double-logarithmic plots, a negative correlation between SS and CS was found in awake, but not anesthetized, rats. PCs with prominent SS coding attenuation during motor learning showed weaker SS-CS correlation. Hence, we demonstrate that neural plasticity for filtering out sensory reafference from active motion occurs in the cerebellar cortex in rats during balance learning. SS-CS interaction may contribute to this rapid plasticity as a form of receptive field plasticity in the cerebellar cortex between two receptive maps of sensory inputs from the external world and of efference copies from the will center for volitional movements.
机译:在各个大脑区域,由自我产生的运动(干扰)和外部被动刺激(干扰)引起的对感觉输入的神经反应不同。区分这种感觉信息的能力可以导致运动执行的准确性更高。然而,在运动学习过程中如何根据这种可区分性来调节感官反应仍然知之甚少。假设小脑可以分析运动学习过程中的感觉信息的功能意义,并且被认为是前庭系统中进行重复计算的关键区域。在这项研究中,我们研究了当大鼠学会在悬浮销钉上保持平衡时,浦肯野细胞(PC)穗序列作为小脑皮质输出。在5分钟的平衡过程中,大鼠逐渐降低了身体摆动的幅度,并减少了脚部滑倒的次数。发现简单的PC(SS; 26个中的17个)和复杂的尖峰(CS; 12个中的7个)最初都以磁头相对于固定参考的角度进行编码。通过使用具有类似运动度的周期,我们发现,大多数PC(17个中的10个)中的此类SS信息编码在平衡学习过程中迅速下降。响应意外的扰动和麻醉,这些PC的SS编码能力得以恢复。通过在双对数图中绘制15秒时间窗内的SS和CS触发频率,可以在清醒但未麻醉的大鼠中发现SS和CS之间的负相关。在运动学习中具有显着SS编码衰减的PC表现出较弱的SS-CS相关性。因此,我们证明了在平衡学习过程中,小脑皮层中发生了从活动运动中滤除感觉活动的神经可塑性。 SS-CS交互作用可能是这种快速可塑性的一种形式,它是小脑皮层中两种感受性图的形式,它们是来自外界的感官输入和意志中心的意志力副本之间的两种形式的感受野。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号