首页> 美国卫生研究院文献>Biophysical Journal >Systems Mechanobiology: Tension-Inhibited Protein Turnover Is Sufficient to Physically Control Gene Circuits
【2h】

Systems Mechanobiology: Tension-Inhibited Protein Turnover Is Sufficient to Physically Control Gene Circuits

机译:系统力学生物学:抑制张力的蛋白质周转量足以物理控制基因电路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Mechanotransduction pathways convert forces that stress and strain structures within cells into gene expression levels that impact development, homeostasis, and disease. The levels of some key structural proteins in the nucleus, cytoskeleton, or extracellular matrix have been recently reported to scale with tissue- and cell-level forces or mechanical properties such as stiffness, and so the mathematics of mechanotransduction becomes important to understand. Here, we show that if a given structural protein positively regulates its own gene expression, then stresses need only inhibit degradation of that protein to achieve stable, mechanosensitive gene expression. This basic use-it-or-lose-it module is illustrated by application to meshworks of nuclear lamin A, minifilaments of myosin II, and extracellular matrix collagen fibers—all of which possess filamentous coiled-coil/supercoiled structures. Past experiments not only suggest that tension suppresses protein degradation mediated and/or initiated by various enzymes but also that transcript levels vary with protein levels because key transcription factors are regulated by these structural proteins. Coupling between modules occurs within single cells and between cells in tissue, as illustrated during embryonic heart development where cardiac fibroblasts make collagen that cardiomyocytes contract. With few additional assumptions, the basic module has sufficient physics to control key structural genes in both development and disease.
机译:机械转导途径将细胞内应力和应变结构的作用力转化为影响发育,体内平衡和疾病的基因表达水平。最近,据报道,细胞核,细胞骨架或细胞外基质中某些关键结构蛋白的水平随组织和细胞水平的力或机械特性(如刚度)而变化,因此,机械传导的数学意义变得尤为重要。在这里,我们表明,如果给定的结构蛋白正向调节其自身的基因表达,则压力仅需抑制该蛋白的降解即可实现稳定的机械敏感基因表达。通过将其应用于核纤层蛋白A,肌球蛋白II的细丝以及细胞外基质胶原纤维的网状结构,说明了这种基本的“用或不用”模块,这些模块均具有丝状的卷曲螺旋/超卷曲结构。过去的实验不仅表明张力抑制了由各种酶介导和/或引发的蛋白质降解,而且转录水平随蛋白质水平而变化,因为关键的转录因子受这些结构蛋白调节。组件之间的耦合发生在单个细胞内以及组织中的细胞之间,如在胚胎心脏发育过程中所说明的,在心脏发育过程中,心脏成纤维细胞使胶原蛋白收缩,心肌细胞收缩。几乎没有其他假设,基本模块具有足够的物理特性来控制发育和疾病中的关键结构基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号