首页> 美国卫生研究院文献>Annals of Botany >Soil and Plant Water Relations Determine Photosynthetic Responses of C3 and C4 Grasses in a Semi‐arid Ecosystem under Elevated CO2
【2h】

Soil and Plant Water Relations Determine Photosynthetic Responses of C3 and C4 Grasses in a Semi‐arid Ecosystem under Elevated CO2

机译:土壤和植物的水分关系决定了CO2升高时半干旱生态系统中C3和C4草的光合响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

To model the effect of increasing atmospheric CO2 on semi‐arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open‐top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracilis (C4) grown at 360 (ambient CO2) and 720 µmol mol–1 CO2 (elevated CO2) in a semi‐arid shortgrass steppe. Assimilation rate (A) and stomatal conductance (gs) at the treatment CO2 concentrations and at a range of intercellular CO2 concentrations and leaf water potentials (ψleaf) were measured over 4 years with variable soil water content caused by season and CO2 treatment. Carboxylation efficiency of ribulose bisphosphate carboxylase/oxygenase (Vc,max), and ribulose bisphosphate regeneration capacity (Jmax) were reduced in P. smithii grown in elevated CO2, to the degree that A was similar in elevated and ambient CO2 (when soil moisture was adequate). Photosynthetic capacity was not reduced in B. gracilis under elevated CO2, but A was nearly saturated at ambient CO2. There were no stomatal adaptations independent of photosynthetic acclimation. Although photosynthetic capacity was reduced in P. smithii growing in elevated CO2, reduced gs and transpiration improved soil water content and ψleaf in the elevated CO2 chambers, thereby improving A of both species during dry periods. These results suggest that photosynthetic responses of C3 and C4 grasses in this semi‐arid ecosystem will be driven primarily by the effect of elevated CO2 on plant and soil water relations.
机译:为了模拟增加大气中二氧化碳对半干旱草原的影响,对于在同一地区生长的C3和C4物种,必须了解叶片对土壤水的季节性变化的气体交换响应以及它们如何被CO2修饰。在这项研究中,使用开放式室研究了在360(环境CO2)和720µmol mol –1 CO2下生长的史密斯氏Pascopyrum smithii(C3)和Bouteloua gracilis(C4)的光合和气孔响应。 (半干旱草)草原中的二氧化碳(升高的二氧化碳)。在4年内测量了不同季节和CO2处理引起的土壤含水量变化情况下,在处理的CO2浓度以及一系列细胞间CO2浓度和叶水势(ψleaf)下的同化率(A)和气孔导度(gs)。在CO 2 升高的条件下生长的史密斯酵母中核糖二磷酸羧化酶/加氧酶的羧化效率(Vc,max)和核糖二磷酸再生能力(Jmax)降低到A在升高的相似度和环境CO 2 (土壤水分充足时)。在CO 2 升高的情况下,细纹芽孢杆菌的光合能力并未降低,但在环境CO 2 下,A的光合能力却几乎饱和。没有独立于光合适应的气孔适应。虽然在CO 2 升高的情况下生长的史密斯假单胞菌的光合能力降低,但g s 的降低和蒸腾作用改善了土壤中的水分和ψ。升高了CO 2 室,从而提高了两个物种在干旱时期的A。这些结果表明,该半干旱生态系统中C 3 和C 4 草的光合作用响应将主要受CO 2 关于植物与土壤水的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号