首页> 美国卫生研究院文献>Applied Bionics and Biomechanics >Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells
【2h】

Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells

机译:通过贴壁细胞骨架的张力模型模拟细胞折纸

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cell origami has been widely used in the field of three-dimensional (3D) cell-populated microstructures due to their multiple advantages, including high biocompatibility, the lack of special requirements for substrate materials, and the lack of damage to cells. A 3D finite element method (FEM) model of an adherent cell based on the tensegrity structure is constructed to describe cell origami by using the principle of the origami folding technique and cell traction forces. Adherent cell models contain a cytoskeleton (CSK), which is primarily composed of microtubules (MTs), microfilaments (MFs), intermediate filaments (IFs), and a nucleoskeleton (NSK), which is mainly made up of the nuclear lamina and chromatin. The microplate is assumed to be an isotropic linear-elastic solid material with a flexible joint that is connected to the cell tensegrity structure model by spring elements representing focal adhesion complexes (FACs). To investigate the effects of the degree of complexity of the tensegrity structure and NSK on the folding angle of the microplate, four models are established in the study. The results demonstrate that the inclusion of the NSK can increase the folding angle of the microplate, indicating that the cell is closer to its physiological environment, while increased complexity can reduce the folding angle of the microplate since the folding angle is depended on the cell types. The proposed adherent cell FEM models are validated by comparisons with reported results. These findings can provide theoretical guidance for the application of biotechnology and the analysis of 3D structures of cells and have profound implications for the self-assembly of cell-based microscale medical devices.
机译:由于具有多种优势,包括高生物相容性,对基材没有特殊要求以及对细胞没有破坏,细胞折纸已被广泛用于三维(3D)细胞填充的微结构领域。利用折纸折叠技术原理和细胞牵引力,构建了基于张力结构的贴壁细胞3D有限元模型来描述细胞折纸。贴壁细胞模型包含一个细胞骨架(CSK),它主要由微管(MTs),微丝(MFs),中间丝(IFs)和核骨架(NSK)组成,其主要由核层和染色质组成。假定微板是具有弹性接头的各向同性线弹性固体材料,该弹性接头通过代表粘着斑复合物(FAC)的弹簧元件连接到细胞张力结构模型。为了研究张力结构和NSK的复杂程度对微孔板折叠角的影响,建立了四个模型。结果表明,包含NSK可以增加微孔板的折叠角,表明细胞更接近其生理环境,而增加的复杂性可以降低微孔板的折叠角,因为折叠角取决于细胞类型。通过与报告的结果进行比较,验证了所提出的贴壁细胞有限元模型。这些发现可为生物技术的应用和细胞的3D结构分析提供理论指导,并对基于细胞的微型医疗设备的自组装产生深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号