首页> 美国卫生研究院文献>APL Bioengineering >Scalable microphysiological system to model three-dimensional blood vessels
【2h】

Scalable microphysiological system to model three-dimensional blood vessels

机译:可扩展的微生理系统来模拟三维血管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 ± 15 μm. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between- and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling.
机译:人们越来越认识到血管模型在理解疾病和药物发现方面具有价值。然而,需要持续的改进以更准确地反映人的血管生理。现实的人体微血管芯片或血管芯片(VoC)内血管细胞的三维(3D)体外培养可能对此有所帮助,因为它们可以通过包括机械刺激(例如剪切应力)来概括体内微环境的各个方面。在这里,我们将人类诱导的多能干细胞用作内皮细胞(hiPSC-EC)的来源,并结合了一种用于实现该目标的称为粘性手指图案(VFP)的技术。我们优化了VFP,以在微流控芯片内部的胶原I细胞外基质中创建空心结构。内腔形成成功率超过90%,并且所形成的蜂窝状内腔在其整个长度上具有一致的直径,平均336±15μm。重要的是,在这些3D微生理系统中培养的hiPSC-EC在48 h内形成了稳定且可行的血管结构。此外,该系统可支持hiPSC-EC与人脑原代血管周细胞的共培养,证明其具有适应多种血管细胞生物学相关组合的能力。关于通道间和通道内直径的成功率和重现性,我们的VFP协议比以前发布的方法更可靠。加上易于准备,这使得基于hiPSC-EC的VoC成为了个性化疾病建模未来研究的低成本平台。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号