首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture
【2h】

Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

机译:限铁连续培养的淡水铜绿微囊藻的特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe.
机译:成功开发了一种由无金属材料制成的连续培养系统(化学稳定剂),用于在纳摩尔铁(Fe)浓度(总铁20至50 nM)下维持铜绿微囊藻PCC7806的有限铁培养。 EDTA用于保持溶液中的Fe,其生物利​​用度的Fe受EDTA铁络合物吸收光并由此将Fe(III)还原为Fe(II)来控制。应用描述Fe转化和生物吸收的动力学模型来确定通过EDTA铁络合物的光还原解离产生的Fe(即非螯合的亚铁)的生物可利用形式。化学修饰理论的预测被修改以解释生物利用的Fe而不是总Fe的光介导的形成,与在Fe限制下的铜绿假单胞菌的生长特性非常吻合。细胞铁的配额随着稀释率的增加而增加,与Droop理论一致。使用保持稳定状态的细胞进行的短期Fe吸收测定表明,铜绿假单胞菌细胞根据Fe胁迫的程度而改变其最大Fe吸收速率(ρmax)。对于在较低Fe利用率(即较低稀释率)条件下生长的细胞,Fe吸收速率较低,这表明连续培养物中的细胞通过降低ρmax来调节Fe限制,同时保持对Fe的恒定亲和力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号