首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Oxidation of Benzene to Phenol Catechol and 123-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1
【2h】

Oxidation of Benzene to Phenol Catechol and 123-Trihydroxybenzene by Toluene 4-Monooxygenase of Pseudomonas mendocina KR1 and Toluene 3-Monooxygenase of Ralstonia pickettii PKO1

机译:Mendocina KR1的甲苯4-单加氧酶和Pickersi PKO1的甲苯3-单加氧酶将苯氧化为苯酚邻苯二酚和123-三羟基苯

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aromatic hydroxylations are important bacterial metabolic processes but are difficult to perform using traditional chemical synthesis, so to use a biological catalyst to convert the priority pollutant benzene into industrially relevant intermediates, benzene oxidation was investigated. It was discovered that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1, and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 convert benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by successive hydroxylations. At a concentration of 165 μM and under the control of a constitutive lac promoter, Escherichia coli TG1/pBS(Kan)T4MO expressing T4MO formed phenol from benzene at 19 ± 1.6 nmol/min/mg of protein, catechol from phenol at 13.6 ± 0.3 nmol/min/mg of protein, and 1,2,3-trihydroxybenzene from catechol at 2.5 ± 0.5nmol/min/mg of protein. The catechol and 1,2,3-trihydroxybenzene products were identified by both high-pressure liquid chromatography and mass spectrometry. When analogous plasmid constructs were used, E. coli TG1/pBS(Kan)T3MO expressing T3MO formed phenol, catechol, and 1,2,3-trihydroxybenzene at rates of 3 ± 1, 3.1 ± 0.3, and 0.26 ± 0.09 nmol/min/mg of protein, respectively, and E. coli TG1/pBS(Kan)TOM expressing TOM formed 1,2,3-trihydroxybenzene at a rate of 1.7 ± 0.3 nmol/min/mg of protein (phenol and catechol formation rates were 0.89 ± 0.07 and 1.5 ± 0.3 nmol/min/mg of protein, respectively). Hence, the rates of synthesis of catechol by both T3MO and T4MO and the 1,2,3-trihydroxybenzene formation rate by TOM were found to be comparable to the rates of oxidation of the natural substrate toluene for these enzymes (10.0 ± 0.8, 4.0 ± 0.6, and 2.4 ± 0.3 nmol/min/mg of protein for T4MO, T3MO, and TOM, respectively, at a toluene concentration of 165 μM).
机译:芳香族羟基化是重要的细菌代谢过程,但是使用传统的化学合成方法很难实现,因此,使用生物催化剂将优先污染物苯转化为工业上重要的中间体,进行了苯氧化研究。结果发现,假单胞菌假单胞菌KR1的甲苯4-单加氧酶(T4MO),皮尔氏菌PKO1的甲苯3-单加氧酶(T3MO)和洋葱伯克霍尔德菌G4的甲苯原单加氧酶(TOM)将苯转化为苯酚,邻苯二酚和1, 2,3-三羟基苯通过连续的羟基化作用。在165μM的浓度下,在组成型lac启动子的控制下,表达T4MO的大肠杆菌TG1 / pBS(Kan)T4MO由苯以19±1.6 nmol / min / mg的蛋白质形成苯酚,由苯酚以13.6±0.3的蛋白质形成儿茶酚nmol / min / mg蛋白质,以及来自儿茶酚的1,2,3-三羟基苯,浓度为2.5±0.5nmol / min / mg蛋白质。通过高压液相色谱和质谱法鉴定邻苯二酚和1,2,3-三羟基苯产物。当使用类似的质粒构建体时,表达T3MO的大肠杆菌TG1 / pBS(Kan)T3MO以3±1、3.1±0.3和0.26±0.09 nmol / min的速率形成苯酚,儿茶酚和1,2,3-三羟基苯/ mg蛋白质,表达TOM的大肠杆菌TG1 / pBS(Kan)TOM以1.7±0.3 nmol / min / mg蛋白质的速率形成1,2,3-三羟基苯(苯酚和儿茶酚的形成率为0.89分别为±0.07和1.5±0.3 nmol / min / mg蛋白质)。因此,发现T3MO和T4MO合成邻苯二酚的速率以及TOM生成1,2,3-三羟基苯的生成速率与这些酶的天然底物甲苯的氧化速率相当(10.0±0.8,4.0对于T4MO,T3MO和TOM,在165μM的甲苯浓度下分别为±0.6和2.4±0.3 nmol / min / mg的蛋白质)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号