首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Glucose metabolism and NADH recycling by Treponema hyodysenteriae the agent of swine dysentery.
【2h】

Glucose metabolism and NADH recycling by Treponema hyodysenteriae the agent of swine dysentery.

机译:猪痢疾密螺旋体猪痢疾密螺旋体的葡萄糖代谢和NADH循环利用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glucose metabolism and the mechanisms of NADH oxidation by Treponema hyodysenteriae were studied. Under an N2 atmosphere, washed cell suspensions of the spirochete consumed glucose and produced acetate, butyrate, H2, and CO2. Approximately twice as much H2 as CO2 was produced. Determinations of radioactivity in products of [14C]glucose and [14C]pyruvate metabolism and analyses of enzyme activities in cell lysates revealed that glucose was catabolized to pyruvate via the Embden-Meyerhof-Parnas pathway. The results of pyruvate exchange reactions with NaH14CO3 and Na14COOH demonstrated that pyruvate was converted to acetyl coenzyme A (acetyl-CoA), H2, and CO2 by a clostridium-type phosphoroclastic mechanism. NADH:ferredoxin oxidoreductase and hydrogenase activities were present in cell lysates and produced H2 from NADH oxidation. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-CoA. Butyrate was formed from acetyl-CoA via a pathway that involved 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, butyryl-CoA dehydrogenase, and butyryl-CoA transferase. T. hyodysenteriae cell suspensions generated less H2 and butyrate under 10% O2-90% N2 than under 100% N2. Cell lysates contained NADH oxidase, NADH peroxidase, and superoxide dismutase activities. These findings indicated there are three major mechanisms that T. hyodysenteriae cells use to recycle NADH generated from the Embden-Meyerhof-Parnas pathway--enzymes in the pathway from acetyl-CoA to butyrate, NADH:ferredoxin oxidoreductase, and NADH oxidase. Versatility in methods of NADH oxidation and an ability to metabolize oxygen could benefit T. hyodysenteriae cells in the colonization of tissues of the swine large bowel.
机译:研究了猪痢疾密螺旋体的葡萄糖代谢和NADH氧化的机理。在N2气氛下,螺旋藻的洗涤过的细胞悬浮液消耗了葡萄糖,并产生了乙酸盐,丁酸盐,H2和CO2。产生的氢气大约是二氧化碳的两倍。对[14C]葡萄糖和[14C]丙酮酸代谢产物中放射性的测定以及细胞裂解物中酶活性的分析表明,葡萄糖通过Embden-Meyerhof-Parnas途径分解为丙酮酸。与NaH14CO3和Na14COOH进行丙酮酸交换反应的结果表明,丙酮酸通过梭状芽孢杆菌型碎屑机制转变为乙酰辅酶A(乙酰辅酶A),H2和CO2。 NADH:铁氧还蛋白氧化还原酶和氢化酶活性存在于细胞裂解物中,并由NADH氧化产生H2。磷酸转乙酰酶和乙酸酯激酶催化从乙酰辅酶A形成乙酸酯。丁酸酯是由乙酰辅酶A通过涉及3-羟基丁酰辅酶A(CoA)脱氢酶,丁酰CoA脱氢酶和丁酰CoA转移酶的途径形成的。猪痢疾短螺旋体细胞悬浮液在10%O2-90%N2下比在100%N2下产生更少的H2和丁酸盐。细胞裂解物含有NADH氧化酶,NADH过氧化物酶和超氧化物歧化酶活性。这些发现表明,猪痢疾短螺旋体细胞用于回收从Embden-Meyerhof-Parnas途径产生的NADH的三种主要机制-从乙酰辅酶A到丁酸的途径中的酶,NADH:铁氧还蛋白氧化还原酶和NADH氧化酶。 NADH氧化方法的多功能性和氧气的代谢能力可在猪大肠组织定殖中有益猪痢疾短螺旋体细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号