class='head no_bottom_margin' id='sec1title'>Int'/> Human Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets Expressing Genetically Encoded Voltage Indicator for Pharmacological and Arrhythmia Studies
首页> 美国卫生研究院文献>Stem Cell Reports >Human Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets Expressing Genetically Encoded Voltage Indicator for Pharmacological and Arrhythmia Studies
【2h】

Human Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets Expressing Genetically Encoded Voltage Indicator for Pharmacological and Arrhythmia Studies

机译:人类诱导的多能干细胞衍生的心脏细胞片表达遗传编码的电压指示剂用于药理和心律失常研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe introduction of the human induced pluripotent stem cell (hiPSC) technology () coupled with improved methods for cardiomyocyte differentiation (, ) brought a unique value to the fields of cardiac disease modeling (, , , , , ) and drug testing (, , , ). In the field of cardiac electrophysiology, most studies examined the electrical properties of the hiPSC-derived cardiomyocytes (hiPSC-CMs) at the single-cell level, focusing primarily on action potential (AP) and ionic current characteristics. Only a few studies have utilized multicellular hiPSC-based cardiac tissue models to evaluate conduction and arrhythmogenesis (, , href="#bib18" rid="bib18" class=" bibr popnode">Laksman et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Lee et al., 2012).Traditional methodologies used for studying conduction in cardiomyocyte cultures include multielectrode extracellular recordings (href="#bib39" rid="bib39" class=" bibr popnode">Yankelson et al., 2008), which may be limited in terms of spatial resolution and degree of complexity of the information gained, or optical mapping (href="#bib9" rid="bib9" class=" bibr popnode">Herron et al., 2012). The latter approach utilizes voltage-sensitive dyes (VSDs) to follow changes in membrane potential (href="#bib23" rid="bib23" class=" bibr popnode">Lopez-Izquierdo et al., 2014, href="#bib24" rid="bib24" class=" bibr popnode">Matiukas et al., 2007). These indicators, although of great utility, can cause phototoxicity and hamper the ability to obtain long-term and repeated recordings.To overcome the aforementioned challenges, we propose to combine the hiPSC technology, two-dimensional (2D) cardiac tissue models, and genetically encoded voltage indicators (GEVIs), such as ArcLight (href="#bib20" rid="bib20" class=" bibr popnode">Leyton-Mange et al., 2014, href="#bib31" rid="bib31" class=" bibr popnode">Shinnawi et al., 2015), VSFP-CR (href="#bib5" rid="bib5" class=" bibr popnode">Chen et al., 2017), CaViar (href="#bib6" rid="bib6" class=" bibr popnode">Dempsey et al., 2016), and VSFP2.3 (href="#bib22" rid="bib22" class=" bibr popnode">Liao et al., 2015), for probing membrane potentials. Specifically, we chose to focus on ArcLight and hypothesized that the generated ArcLight-expressing hiPSC-derived cardiac cell sheets (hiPSC-CCSs) will allow gaining high-resolution information regarding tissue conduction and repolarization in both acute and long-term studies. Following establishment of this unique multicellular model, we aimed to evaluate its potential for drug testing using agents known to alter conduction and/or repolarization with specific emphasis on studying the mechanisms of drug-induced arrhythmias at the tissue level. Finally, we aimed to evaluate the biophysical properties of reentrant arrhythmias (spiral waves) induced in this model through either a drug-related pro-arrhythmia mechanism or following programmed electrical stimulation and to test the efficacy of clinically relevant therapeutic interventions.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介引入了人类诱导的多能干细胞(hiPSC)技术()心肌细胞分化的方法(,)为心脏病建模(,,,,,)和药物测试(,,,)领域带来了独特的价值。在心脏电生理领域,大多数研究都在单细胞水平上研究了hiPSC衍生的心肌细胞(hiPSC-CM)的电特性,主要集中在动作电位(AP)和离子电流特性上。只有少数研究利用基于多细胞hiPSC的心脏组织模型评估传导和心律失常(,,href="#bib18" rid="bib18" class=" bibr popnode"> Laksman et al。,2017 ,href="#bib19" rid="bib19" class=" bibr popnode"> Lee等人,2012 )。用于研究心肌细胞培养物中传导的传统方法包括多电极细胞外录音(href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Yankelson等人,2008 ),在空间分辨率和所获得信息(或光学信息)的复杂程度方面可能受到限制映射(href="#bib9" rid="bib9" class=" bibr popnode"> Herron等人,2012 )。后一种方法利用压敏染料(VSD)来跟踪膜电位的变化(href="#bib23" rid="bib23" class=" bibr popnode"> Lopez-Izquierdo等,2014 ,href="#bib24" rid="bib24" class=" bibr popnode"> Matiukas等人,2007 )。这些指标尽管用途广泛,但会引起光毒性并妨碍获得长期和重复记录的能力。为了克服上述挑战,我们建议将hiPSC技术,二维(2D)心脏组织模型和遗传学方法相结合。编码电压指示器(GEVI),例如ArcLight(href="#bib20" rid="bib20" class=" bibr popnode"> Leyton-Mange等人,2014 ,href =“# bib31“ rid =” bib31“ class =” bibr popnode“> Shinnawi等人,2015 ),VSFP-CR(href="#bib5" rid="bib5" class=" bibr popnode"> Chen等人,2017 ),CaViar(href="#bib6" rid="bib6" class=" bibr popnode"> Dempsey等人,2016 )和VSFP2.3 (href="#bib22" rid="bib22" class=" bibr popnode"> Liao等人,2015 ),用于探测膜电位。具体而言,我们选择专注于ArcLight,并假设在急性和长期研究中,生成的表达ArcLight的表达hiPSC的心脏细胞片(hiPSC-CCSs)将获得有关组织传导和复极化的高分辨率信息。建立了这种独特的多细胞模型后,我们旨在评估其使用已知可改变传导和/或复极化作用的药物进行药物测试的潜力,并特别着重于研究组织水平上的药物性心律失常的机制。最后,我们旨在评估通过药物相关的心律失常机制或遵循程序性电刺激在该模型中诱发的折返性心律不齐(螺旋波)的生物物理特性,并测试临床相关治疗干预措施的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号