class='head no_bottom_margin' id='sec1title'>Int'/> High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells
首页> 美国卫生研究院文献>Stem Cell Reports >High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells
【2h】

High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells

机译:通过人外周血单个核细胞的同时重编程和基因组编辑的iPSC的高级精确敲除。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionInduced pluripotent stem cells (iPSCs) have been recognized as an attractive cell source for stem cell therapy, drug discovery, and disease modeling (, , ). Since blood cells can be easily obtained through a minimally invasive process and have been widely applied in clinical diagnosis, we and other investigators have been working on reprogramming of peripheral blood (PB) mononuclear cells (MNCs) in recent years (, , , , , , , , , , , , href="#bib43" rid="bib43" class=" bibr popnode">Su et al., 2016, href="#bib49" rid="bib49" class=" bibr popnode">Wen et al., 2016, href="#bib48" rid="bib48" class=" bibr popnode">Wen et al., 2017). More recently, we reported an efficient system for PB MNC reprogramming using an optimized combination of episomal vectors that express five reprogramming factors, and found that thousands of integration-free iPSC colonies can be generated from 1 × 106 PB MNCs (href="#bib49" rid="bib49" class=" bibr popnode">Wen et al., 2016, href="#bib48" rid="bib48" class=" bibr popnode">Wen et al., 2017). This seemingly simple but highly efficient system has been adopted by many other laboratories (href="#bib6" rid="bib6" class=" bibr popnode">Chou et al., 2015, href="#bib21" rid="bib21" class=" bibr popnode">Hu et al., 2015). The episomal vectors we used are plasmids carrying EBNA1 and oriP, which maintain the transgene expression for 1–2 weeks, allowing for successful reprogramming, and are gradually depleted from the cells during passage leading to generation of integration-free iPSCs.For clinical regenerative medicine applications, patient-specific iPSCs, which often carry a disease-causing gene(s), have to be genome edited before differentiation into functional cells for therapy. CRISPR-Cas9 is a powerful genome editing technology to achieve this goal (href="#bib26" rid="bib26" class=" bibr popnode">Li et al., 2015, href="#bib37" rid="bib37" class=" bibr popnode">Park et al., 2015, href="#bib51" rid="bib51" class=" bibr popnode">Xie et al., 2014). CRISPR-Cas9 is an adoptive immune system evolved in bacteria and Archaea to fight against invading agents such as bacteriophages or plasmids (href="#bib50" rid="bib50" class=" bibr popnode">Wright et al., 2016), and has been successfully engineered to target the human genome (href="#bib18" rid="bib18" class=" bibr popnode">Hou et al., 2013). Diverse CRISPR systems have been adapted for use in editing iPSCs (href="#bib18" rid="bib18" class=" bibr popnode">Hou et al., 2013, href="#bib39" rid="bib39" class=" bibr popnode">Ran et al., 2015, href="#bib57" rid="bib57" class=" bibr popnode">Zetsche et al., 2015), among which the most commonly used system is derived from Streptococcus pyogenes. In this system, single guide RNA (sgRNA) guides endonuclease Cas9 to cleave a double-stranded DNA sequence of ∼20 bp in length at 3 bp upstream of the protospacer adjacent motif (PAM) NGG. After double-stranded DNA cleavage, the damage is often repaired by error-prone non-homologous end joining (NHEJ) or precise homologous recombination (HR) pathway (href="#bib17" rid="bib17" class=" bibr popnode">Hockemeyer et al., 2011, href="#bib52" rid="bib52" class=" bibr popnode">Yang et al., 2013). If a donor template that harbors both left and right homology arms is provided, the cells can be tricked to use the donor template to repair the damage instead of searching for the sister chromatids. As a result, a DNA fragment of interest can be precisely knocked in. However, this homology-directed repair (HDR)-mediated knockin system is far less efficient than gene knockout. In attempt to break this bottleneck in precise genome editing, we and other investigators developed a novel double-cut HDR donor, which is flanked by sgRNA recognition sequence and is released after CRISPR-Cas9 cleavage (href="#bib23" rid="bib23" class=" bibr popnode">Irion et al., 2014, href="#bib58" rid="bib58" class=" bibr popnode">Zhang et al., 2017). After optimization, we observed an ∼5-fold increase in HDR efficiency using the double-cut donor with homology arms of 300–600 bp in length relative to circular plasmid donors (href="#bib58" rid="bib58" class=" bibr popnode">Zhang et al., 2017). Shortly after publication of our discovery, a similar study also reported the unprecedented editing efficiency of homology-mediated end joining compared with HR and microhomology-mediated end joining (href="#bib53" rid="bib53" class=" bibr popnode">Yao et al., 2017).The conventional strategy of regenerative medicine is generation of iPSCs first followed by genome editing. However, this is a time-consuming and labor-intensive procedure that requires ∼3 months of cell culture and two clone selections (href="#bib13" rid="bib13" class=" bibr popnode">Ding et al., 2013, href="#bib16" rid="bib16" class=" bibr popnode">Hockemeyer et al., 2009, href="#bib17" rid="bib17" class=" bibr popnode">Hockemeyer et al., 2011, href="#bib19" rid="bib19" class=" bibr popnode">Howden et al., 2011, href="#bib41" rid="bib41" class=" bibr popnode">Soldner et al., 2011, href="#bib56" rid="bib56" class=" bibr popnode">Yusa et al., 2011, href="#bib61" rid="bib61" class=" bibr popnode">Zou et al., 2009). To cut back on the time spent, one-step simultaneous reprogramming and CRISPR-Cas9 genome editing to generate gene-modified iPSCs from somatic cells has been proposed (href="#bib20" rid="bib20" class=" bibr popnode">Howden et al., 2015, href="#bib46" rid="bib46" class=" bibr popnode">Tidball et al., 2017). href="#bib20" rid="bib20" class=" bibr popnode">Howden et al. (2015) have reported generation of gene edited iPSCs from fibroblasts by nucleofection of episomal vectors expressing reprogramming factors and CRISPR-Cas9 vectors. They targeted a GFP reporter to the DNMT3A locus during reprogramming. They observed up to 5% GFP-positive edited cells in bulk cells, which is five times higher than that achieved by direct editing of iPSCs. These data provide the first evidence for the benefit of combining somatic cell reprogramming and genome editing in a single step. However, the use of fibroblasts from human skin biopsy is problematic because of the high mutation rate of skin cells after long-term exposure to UV light radiation and the invasive procedure used to procure the cells (href="#bib1" rid="bib1" class=" bibr popnode">Abyzov et al., 2012). In contrast to fibroblasts, PB cells are a preferable cell source for reprogramming (href="#bib60" rid="bib60" class=" bibr popnode">Zhang, 2013). As such, we attempted to generate gene edited iPSCs from PB MNCs by simultaneously reprogramming and gene editing.In this study, we designed double-cut donors for HDR knockin of fluorescent reporters (href="#bib58" rid="bib58" class=" bibr popnode">Zhang et al., 2017). The knockin efficiency can be precisely determined by fluorescence-activated cell sorting (FACS) analysis of fluorescence-positive cells. A simple combination of reprogramming vectors and genome editing plasmids led to a nearly 10% knockin efficiency. Further improvements, including combining Cas9 and KLF4 expression in one vector and addition of SV40LT, increased HDR efficiency to up to 40%. Thus, in this study, we have established an optimized reprogramming and CRISPR-Cas9 system to efficiently generate gene-modified integration-free iPSCs directly from PB.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介诱导型多能干细胞(iPSC)被认为是干细胞的诱人细胞来源治疗,药物发现和疾病建模(,)。由于可以通过微创过程轻松获得血细胞并将其广泛应用于临床诊断,因此,近年来,我们和其他研究人员一直在努力对外周血(PB)单核细胞(MNC)进行重新编程(,,,,, ,,,,,,href="#bib43" rid="bib43" class=" bibr popnode"> Su等人,2016 ,href =“#bib49” rid =“ bib49 “ class =” bibr popnode“>温等人,2016 ,href="#bib48" rid="bib48" class=" bibr popnode">温等人,2017 ) 。最近,我们报道了使用表达5个重编程因子的附加型载体的优化组合进行PB MNC重编程的有效系统,发现从1×10 6 可以生成数千个无整合iPSC集落。 PB跨国公司(href="#bib49" rid="bib49" class=" bibr popnode">温等人,2016 ,href =“#bib48” rid =“ bib48” class =“ bibr popnode“> Wen等人,2017 )。这个看似简单但高效的系统已被许多其他实验室采用(href="#bib6" rid="bib6" class=" bibr popnode"> Chou et al。,2015 ,href = “#bib21” rid =“ bib21” class =“ bibr popnode”> Hu等人,2015 )。我们使用的附加型载体是携带EBNA1和oriP的质粒,它们可以维持转基因表达1-2周,从而可以成功进行重新编程,并在传代过程中逐渐从细胞中耗竭,从而生成无整合的iPSC。用于临床再生医学在应用中,通常带有致病基因的患者特异性iPSC在分化为功能性细胞进行治疗之前必须进行基因组编辑。 CRISPR-Cas9是实现这一目标的强大基因组编辑技术(href="#bib26" rid="bib26" class=" bibr popnode"> Li et al。,2015 ,href =“ #bib37“ rid =” bib37“ class =” bibr popnode“>公园等人,2015 ,href="#bib51" rid="bib51" class=" bibr popnode">谢等人。 ,2014 )。 CRISPR-Cas9是一种在细菌和古细菌中进化的过继免疫系统,可抵抗噬菌体或质粒等入侵剂(href="#bib50" rid="bib50" class=" bibr popnode"> Wright等,2016 ),并已成功地针对人类基因组进行了工程改造(href="#bib18" rid="bib18" class=" bibr popnode"> Hou等人,2013 )。多样的CRISPR系统已被修改用于编辑iPSC(href="#bib18" rid="bib18" class=" bibr popnode"> Hou et al。,2013 ,href =“#bib39 “ rid =” bib39“ class =” bibr popnode“> Ran等人,2015 ,href="#bib57" rid="bib57" class=" bibr popnode"> Zetsche等人,2015 ),其中最常用的系统来自化脓性链球菌。在该系统中,单向导RNA(sgRNA)指导核酸内切酶Cas9在原间隔子相邻基序(PAM)NGG的上游3 bp处切割长度约为20 bp的双链DNA序列。双链DNA切割后,通常通过易错的非同源末端连接(NHEJ)或精确的同源重组(HR)途径(href =“#bib17” rid =“ bib17” class =“ bibr popnode“> Hockemeyer等,2011 ,href="#bib52" rid="bib52" class=" bibr popnode"> Yang等,2013 )。如果提供了带有左右同源臂的供体模板,则可以诱骗细胞使用供体模板修复损伤,而不是寻找姊妹染色单体。结果,可以精确敲入感兴趣的DNA片段。但是,这种同源性定向修复(HDR)介导的敲入系统远不如基因敲除有效。为了打破精确基因组编辑中的这一瓶颈,我们和其他研究人员开发了一种新型的双切HDR供体,其侧翼为sgRNA识别序列,并在CRISPR-Cas9切割后释放(href =“#bib23” rid = “ bib23” class =“ bibr popnode”>爱里翁等人,2014 ,href="#bib58" rid="bib58" class=" bibr popnode"> Zhang等人,2017 )。优化后,我们观察到使用双切供体的同源臂长度为300–600 bp的双切供体相对于环状质粒供体,HDR效率提高了约5倍(href =“#bib58” rid =“ bib58”类=“ bibr popnode”> Zhang等人,2017 )。我们的发现发表后不久,一项类似的研究还报告了与HR和微同源性介导的末端连接相比,同源性介导的末端连接具有前所未有的编辑效率(href="#bib53" rid="bib53" class=" bibr popnode"> Yao等人。 ,2017 )。传统的再生医学策略是先生成iPSC,然后进行基因组编辑。但是,这是一项耗时且劳动密集的过程,需要约3个月的细胞培养和两个克隆选择(href="#bib13" rid="bib13" class=" bibr popnode"> Ding等人。 ,2013 ,href="#bib16" rid="bib16" class=" bibr popnode"> Hockemeyer等人,2009 ,href =“#bib17” rid =“ bib17 “ class =” bibr popnode“> Hockemeyer等,2011 ,href="#bib19" rid="bib19" class=" bibr popnode"> Howden等,2011 , href="#bib41" rid="bib41" class=" bibr popnode"> Soldner等人,2011 ,href =“#bib56” rid =“ bib56” class =“ bibr popnode” > Yusa等,2011 ,href="#bib61" rid="bib61" class=" bibr popnode"> Zou等,2009 )。为了减少花费的时间,已经提出了一步同步重编程和CRISPR-Cas9基因组编辑以从体细胞生成基因修饰的iPSC的提议(href =“#bib20” rid =“ bib20” class =“ bibr popnode “> Howden等人,2015 ,href="#bib46" rid="bib46" class=" bibr popnode"> Tidball等人,2017 )。 href="#bib20" rid="bib20" class=" bibr popnode"> Howden等。 (2015)报告了通过表达重编程因子的附加型载体和CRISPR-Cas9载体的核转染,从成纤维细胞生成了基因编辑的iPSC。他们在重新编程过程中将GFP报告基因靶向DNMT3A基因座。他们在大细胞中观察到多达5%GFP阳性的编辑细胞,这比通过iPSC的直接编辑获得的细胞高五倍。这些数据为在单个步骤中结合体细胞重编程和基因组编辑的益处提供了第一个证据。但是,由于长期暴露于紫外线照射后皮肤细胞的高突变率以及用于获取细胞的侵入性程序,因此使用来自人类皮肤活检的成纤维细胞是有问题的(href =“#bib1” rid = “ bib1” class =“ bibr popnode”> Abyzov等人,2012 )。与成纤维细胞相比,PB细胞是重编程的首选细胞来源(href="#bib60" rid="bib60" class=" bibr popnode"> Zhang,2013 )。因此,我们尝试通过同时重编程和基因编辑来从PB MNC生成基因编辑的iPSC。在这项研究中,我们设计了荧光报告子HDR敲入的双切供体(href =“#bib58” rid =“ bib58” class =“ bibr popnode”> Zhang等人,2017 )。通过荧光阳性细胞的荧光激活细胞分选(FACS)分析可以精确确定敲入效率。重编程载体和基因组编辑质粒的简单组合导致近10%的敲入效率。进一步的改进,包括在一个载体中结合Cas9和KLF4表达,以及添加SV40LT,将HDR效率提高了40%。因此,在这项研究中,我们建立了优化的重编程和CRISPR-Cas9系统,可以直接从PB有效地产生基因修饰的无整合iPSC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号