首页> 美国卫生研究院文献>Stem Cell Reports >Elevated Exogenous Pyruvate Potentiates Mesodermal Differentiation through Metabolic Modulation and AMPK/mTOR Pathway in Human Embryonic Stem Cells
【2h】

Elevated Exogenous Pyruvate Potentiates Mesodermal Differentiation through Metabolic Modulation and AMPK/mTOR Pathway in Human Embryonic Stem Cells

机译:升高的外源丙酮酸通过代谢调节和人类胚胎干细胞中的AMPK / mTOR途径增强中胚层分化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionBalanced cellular metabolism is essential for cell survival and proliferation in embryogenesis and cancer biology. Metabolic balance is shifted when the cell fate is changed in somatic reprogramming or stem cell differentiation (, , ). Increasing evidence shows that the modulation of cellular metabolism affects self-renewal and cell-fate determination (, , ). Pyruvate is the keystone molecule in mammalian metabolism and has been widely used to culture human preimplantation embryos and human embryonic stem cells (hESCs) (, , ). Here we investigated the impact of exogenous pyruvate on hESC metabolism, and further revealed its roles in signal transduction and cell-fate determination.Pyruvate is the main product from glycolysis, and can be utilized in either lactate production or generation of acetyl-coenzyme A (CoA) for the tricarboxylic acid (TCA) cycle (). In pluripotent stem cells, pyruvate is mainly converted to lactic acid via lactic acid fermentation, and the rest is utilized through the TCA cycle to produce energy in oxidative phosphorylation (, , ). In contrast, pyruvate is mainly metabolized through the TCA cycle in somatic cells (). The interference of pyruvate-related metabolism has a profound impact on autophagy, cell survival, and cell differentiation in stem cells (, href="#bib32" rid="bib32" class=" bibr popnode">Moussaieff et al., 2015b, href="#bib33" rid="bib33" class=" bibr popnode">Nagaraj et al., 2017). For example, the inhibition of glycolysis suppresses endogenous pyruvate production and induces differentiation (href="#bib3" rid="bib3" class=" bibr popnode">Burgess et al., 2014, href="#bib27" rid="bib27" class=" bibr popnode">Lunt and Vander Heiden, 2011, href="#bib32" rid="bib32" class=" bibr popnode">Moussaieff et al., 2015b, href="#bib49" rid="bib49" class=" bibr popnode">Vander Heiden et al., 2009). During gastrulation and stem cell differentiation, the balance of pyruvate usage is shifted from glycolysis to mitochondrial oxidative metabolism (href="#bib4" rid="bib4" class=" bibr popnode">Butcher et al., 1998, href="#bib12" rid="bib12" class=" bibr popnode">Conaghan et al., 1993, href="#bib20" rid="bib20" class=" bibr popnode">International Stem Cell Initiative et al., 2010). All the evidence suggests that pyruvate plays a central role in stem cell regulation.Cells in our body are constantly under the influence of extracellular pyruvate, which can be imported through its transporters for intracellular metabolism (href="#bib18" rid="bib18" class=" bibr popnode">Halestrap et al., 1990, href="#bib38" rid="bib38" class=" bibr popnode">Poole and Halestrap, 1993). Exogenous pyruvate has been widely used in clinical practice and basic research. In clinical practice, systemic administration of pyruvate is used as a therapeutic intervention for cardiac, neurological, and acid-base disorders (href="#bib42" rid="bib42" class=" bibr popnode">Salahudeen et al., 1991). In basic research, up to 40 mM pyruvate has been used in cell culture, and many basic culture media contain 0.5–1 mM pyruvate (href="#bib8" rid="bib8" class=" bibr popnode">Chavez-Perez et al., 2011, href="#bib19" rid="bib19" class=" bibr popnode">Hereng et al., 2011, href="#bib51" rid="bib51" class=" bibr popnode">Watanabe et al., 2017). Pyruvate is used in all preimplantation embryo and hESC media (href="#bib4" rid="bib4" class=" bibr popnode">Butcher et al., 1998, href="#bib12" rid="bib12" class=" bibr popnode">Conaghan et al., 1993, href="#bib20" rid="bib20" class=" bibr popnode">International Stem Cell Initiative et al., 2010), and displays cellular protection to stem cells (href="#bib14" rid="bib14" class=" bibr popnode">Gonzalez et al., 2005, href="#bib19" rid="bib19" class=" bibr popnode">Hereng et al., 2011, href="#bib39" rid="bib39" class=" bibr popnode">Ramos-Ibeas et al., 2017, href="#bib42" rid="bib42" class=" bibr popnode">Salahudeen et al., 1991). In our laboratory we use E8 medium, which contains 0.5 mM pyruvate, to maintain hESCs.Exogenous pyruvate is important in early embryogenesis. Pyruvate uptake from media is essential for preimplantation embryos (href="#bib4" rid="bib4" class=" bibr popnode">Butcher et al., 1998). Pyruvate regulates the nuclear localization of TCA-cycle enzymes and is required for the genomic activation in mammalian zygote (href="#bib33" rid="bib33" class=" bibr popnode">Nagaraj et al., 2017). At the same time, pyruvate also plays a role in epigenetic modification. Pyruvate is converted to acetyl-CoA, which contributes to histone acetylation (href="#bib32" rid="bib32" class=" bibr popnode">Moussaieff et al., 2015b, href="#bib37" rid="bib37" class=" bibr popnode">Pietrocola et al., 2015). Elevated exogenous pyruvate also promotes the nuclear translocation of pyruvate dehydrogenase (PDH) for histone acetylation (href="#bib46" rid="bib46" class=" bibr popnode">Sutendra et al., 2014). In addition, pyruvate generates α-ketoglutarate (α-KG) in the TCA cycle, which is involved in DNA methylation (href="#bib7" rid="bib7" class=" bibr popnode">Carey et al., 2015, href="#bib32" rid="bib32" class=" bibr popnode">Moussaieff et al., 2015b, href="#bib47" rid="bib47" class=" bibr popnode">TeSlaa et al., 2016). Given its essential roles in embryogenesis, it would be important to explore the regulatory functions of pyruvate in hESC maintenance and differentiation.Pluripotency and differentiation are influenced by exogenous metabolites such as methionine, serine, acetate, and membrane-permeable α-KG analog (dimethyl α-KG, DM2OG) (href="#bib7" rid="bib7" class=" bibr popnode">Carey et al., 2015, href="#bib23" rid="bib23" class=" bibr popnode">Kilberg et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Nagaraj et al., 2017, href="#bib44" rid="bib44" class=" bibr popnode">Shiraki et al., 2014, href="#bib50" rid="bib50" class=" bibr popnode">Wang et al., 2009). We and others have shown that some exogenous metabolites can also influence signaling cascades (href="#bib30" rid="bib30" class=" bibr popnode">Meng et al., 2018b, href="#bib6" rid="bib6" class=" bibr popnode">Carcamo et al., 2004). Because of pyruvate's critical roles in metabolism and early embryogenesis, we hypothesize that exogenous pyruvate can influence metabolism and signaling pathways in hESCs. In this report, we demonstrate that elevated exogenous pyruvate alters the metabolic profile and enhances oxidative metabolism. Pyruvate changes the expression of metabolic genes and the phosphorylation of metabolic enzymes. In differentiation, pyruvate potentiates mesodermal and endodermal lineage-specific differentiation. We further show that pyruvate stimulates mesoderm differentiation by modulating AMP kinase (AMPK) and mammalian target of rapamycin (mTOR) pathways. Our study highlights pyruvate as a key modulator that integrates metabolism and signal transduction in stem cell regulation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介平衡的细胞代谢对于胚胎发生和癌症生物学中的细胞存活和增殖至关重要。当细胞命运在体细胞重编程或干细胞分化中发生变化时,代谢平衡就会发生变化(,,)。越来越多的证据表明,细胞代谢的调节会影响自我更新和细胞命运的确定(,,)。丙酮酸是哺乳动物新陈代谢的关键分子,已被广泛用于培养人类植入前胚胎和人类胚胎干细胞(hESCs)(,,)。在这里,我们研究了外源丙酮酸对hESC代谢的影响,并进一步揭示了其在信号传导和细胞命运确定中的作用。丙酮酸是糖酵解的主要产物,可用于乳酸的生产或乙酰辅酶A的产生( CoA)表示三羧酸(TCA)循环()。在多能干细胞中,丙酮酸主要通过乳酸发酵转化为乳酸,其余的则通过TCA循环利用,从而在氧化磷酸化中产生能量(“”)。相反,丙酮酸主要通过TCA循环在体细胞中代谢()。丙酮酸相关代谢的干扰对干细胞的自噬,细胞存活和细胞分化有深远的影响(,href="#bib32" rid="bib32" class=" bibr popnode"> Moussaieff等, 2015b ,href="#bib33" rid="bib33" class=" bibr popnode"> Nagaraj等人,2017 )。例如,抑制糖酵解作用会抑制内源性丙酮酸的产生并诱导分化(href="#bib3" rid="bib3" class=" bibr popnode"> Burgess et al。,2014 ,href = “#bib27” rid =“ bib27” class =“ bibr popnode”> Lunt and Vander Heiden,2011 ,href="#bib32" rid="bib32" class=" bibr popnode">穆塞耶夫等,2015b ,href="#bib49" rid="bib49" class=" bibr popnode">范德·海登等人,2009 )。在胃形成和干细胞分化过程中,丙酮酸的使用平衡已从糖酵解转变为线粒体的氧化代谢(href="#bib4" rid="bib4" class=" bibr popnode"> Butcher等,1998 ,href="#bib12" rid="bib12" class=" bibr popnode"> Conaghan等,1993 ,href =“#bib20” rid =“ bib20” class =“ bibr popnode“>国际干细胞倡议组织等,2010 )。所有证据表明丙酮酸在干细胞调节中起着核心作用。我们体内的细胞一直受到细胞外丙酮酸的影响,丙酮酸可以通过其转运蛋白输入进行细胞内代谢(href =“#bib18” rid =“ bib18“ class =” bibr popnode“> Halestrap等,1990 ,href="#bib38" rid="bib38" class=" bibr popnode"> Poole and Halestrap,1993 ) 。外源丙酮酸已广泛用于临床实践和基础研究。在临床实践中,丙酮酸的全身给药被用作对心脏,神经系统和酸碱性疾病的治疗性干预措施(href="#bib42" rid="bib42" class=" bibr popnode"> Salahudeen等, 1991 )。在基础研究中,细胞培养中使用了多达40 mM的丙酮酸,许多基本培养基中都含有0.5–1 mM的丙酮酸(href="#bib8" rid="bib8" class=" bibr popnode"> Chavez- Perez等人,2011 ,href="#bib19" rid="bib19" class=" bibr popnode"> Hereng等人,2011 ,href =“#bib51” rid =“ bib51” class =“ bibr popnode”> Watanabe等人,2017 )。丙酮酸可用于所有植入前的胚胎和hESC培养基(href="#bib4" rid="bib4" class=" bibr popnode"> Butcher等,1998 ,href =“#bib12” rid =“ bib12” class =“ bibr popnode”> Conaghan等,1993 ,href="#bib20" rid="bib20" class=" bibr popnode">国际干细胞倡议等。 ,2010 ),并显示对干细胞的细胞保护(href="#bib14" rid="bib14" class=" bibr popnode">冈萨雷斯等人,2005 ,href =“#bib19” rid =“ bib19” class =“ bibr popnode”> Hereng等人,2011 ,href="#bib39" rid="bib39" class=" bibr popnode"> Ramos- Ibeas等,2017 ,href="#bib42" rid="bib42" class=" bibr popnode"> Salahudeen等,1991 )。在我们的实验室中,我们使用含有0.5mM丙酮酸的E8培养基来维持hESCs。外源丙酮酸在早期胚胎发生中很重要。培养基中丙酮酸的摄取对于植入前的胚胎至关重要(href="#bib4" rid="bib4" class=" bibr popnode"> Butcher et al。,1998 )。丙酮酸调节TCA循环酶的核定位,是哺乳动物合子中基因组激活所必需的(href="#bib33" rid="bib33" class=" bibr popnode"> Nagaraj et al。,2017 )。与此同时丙酮酸在表观遗传修饰中也起作用。丙酮酸转化为乙酰辅酶A,有助于组蛋白乙酰化(href="#bib32" rid="bib32" class=" bibr popnode"> Moussaieff et al。,2015b ,href =“ #bib37“ rid =” bib37“ class =” bibr popnode“> Pietrocola等人,2015 )。升高的外源丙酮酸也促进了丙酮酸脱氢酶(PDH)的核易位,从而促进了组蛋白的乙酰化作用(href="#bib46" rid="bib46" class=" bibr popnode"> Sutendra et al。,2014 )。此外,丙酮酸会在TCA循环中生成α-酮戊二酸(α-KG),这与DNA甲基化有关(href="#bib7" rid="bib7" class=" bibr popnode"> Carey等, 2015 ,href="#bib32" rid="bib32" class=" bibr popnode">穆塞耶夫等人,2015b ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”> TeSlaa等人,2016 )。鉴于丙酮酸在胚胎发生中的重要作用,探索丙酮酸在hESC维持和分化中的调控功能非常重要。多能性和分化受蛋氨酸,丝氨酸,乙酸盐和膜透性α-KG类似物(二甲基α-KG,DM2OG)(href="#bib7" rid="bib7" class=" bibr popnode"> Carey等人,2015 ,href =“#bib23” rid =“ bib23 “ class =” bibr popnode“> Kilberg等人,2016 ,href="#bib33" rid="bib33" class=" bibr popnode"> Nagaraj等人,2017 , href="#bib44" rid="bib44" class=" bibr popnode"> Shiraki等人,2014 ,href =“#bib50” rid =“ bib50” class =“ bibr popnode” > Wang等人,2009 )。我们和其他人已经表明,一些外源代谢物也可以影响信号级联反应(href="#bib30" rid="bib30" class=" bibr popnode"> Meng等人,2018b ,href = “#bib6” rid =“ bib6” class =“ bibr popnode”> Carcamo等人,2004 )。由于丙酮酸在代谢和早期胚胎发生中的关键作用,我们假设外源丙酮酸会影响hESCs的代谢和信号通路。在这份报告中,我们证明了升高的外源丙酮酸改变了代谢谱并增强了氧化代谢。丙酮酸改变代谢基因的表达和代谢酶的磷酸化。在分化中,丙酮酸增强中胚层和内胚层谱系特异性分化。我们进一步表明,丙酮酸通过调节AMP激酶(AMPK)和雷帕霉素(mTOR)途径的哺乳动物靶标刺激中胚层分化。我们的研究强调丙酮酸是在干细胞调节中整合新陈代谢和信号转导的关键调节剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号