首页> 美国卫生研究院文献>The Journal of Neuroscience >Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex
【2h】

Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex

机译:猕猴视觉皮层中运动处理的快速自适应控制机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components.>SIGNIFICANCE STATEMENT Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales.
机译:神经网络的关键特征是它们能够响应于感官输入的变化而迅速调整其功能,包括信号增益和时间动态。这些调整被认为对于优化系统的灵敏度很重要,但是对它们的机制仍然知之甚少。我们研究了猕猴初级视觉皮层方向选择细胞中时间整合的适应性变化,其中提出了特定的假设以说明快速适应性。通过独立刺激特定方向的通道,我们发现一个方向的运动时间积分控制与正交方向驱动的运动信号无关。我们还发现,单个神经元可以同时支持两个不同的时间积分配置,以便在正交方向上运动。这些发现排除了广泛的自适应机制,这是控制时间积分的关键,包括未记录的归一化和尖峰生成和体细胞适应在记录的方向选择单元中的非线性。此类机制的调节范围太广,或发生在下游的距离太远,无法解释我们在单个神经元中观察到的通道特异性和多重时间整合。相反,我们不得不得出结论,即涉及并行处理路径,并且我们使用计算机模型演示了这样的电路。该解决方案允许分别优化在不同方向/方向通道上的处理,并且是明智的,因为在典型的运动条件下(例如平移或迫近),视网膜上的速度是图像分量方向的函数。>意义声明视觉皮层中的许多神经元都是根据其时空接受域来理解的。现在已经知道,视觉反应的时空整合不是固定的,而是取决于视觉输入。例如,选择性地响应运动方向的神经元在视觉运动较快时会在较短的时间窗口内积分信号,在运动较慢时会在较长的窗口内积分信号。我们通过记录神经元对神经元的反应机理进行了研究,这些神经元响应于以不同速度沿两个不同方向运动的刺激。对结果进行的计算机模拟使我们能够排除几种候选理论,而支持一种模型,该模型跨多个在不同时标上运行的并行通道进行集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号