首页> 美国卫生研究院文献>The Journal of Neuroscience >Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons
【2h】

Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons

机译:体内嘈杂的邻近细胞刺激导致可靠的突触并揭示单个神经元的高频编码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Single cells in the motor and somatosensory cortex of rats were stimulated in vivo with broadband fluctuating currents applied juxtacellularly. Unlike the DC current steps used previously, fluctuating stimulation currents reliably evoked spike trains with precise timing of individual spikes. Fluctuating currents resulted in strong cellular responses at stimulation frequencies beyond the inverse membrane time constant and the mean firing rate of the neuron. Neuronal firing was associated with high rates of information transmission, even for the high-frequency components of the stimulus. Such response characteristics were also revealed in additional experiments with sinusoidal juxtacellular stimulation. For selected cells, we could reproduce these statistics with compartmental models of varying complexity. We also developed a method to generate Gaussian stimuli that evoke spike trains with prescribed spike times (under the constraint of a certain rate and coefficient of variation) and exemplify its ability to achieve precise and reliable spiking in cortical neurons in vivo. Our results demonstrate a novel method for precise control of spike timing by juxtacellular stimulation, confirm and extend earlier conclusions from ex vivo work about the capacity of cortical neurons to generate precise discharges, and contribute to the understanding of the biophysics of information transfer of single neurons in vivo at high frequencies.>SIGNIFICANCE STATEMENT Nanostimulation of single identified neurons in vivo can control spike frequency parametrically and, surprisingly, can even bias the animal's behavioral response. Here, we extend this stimulation protocol to time-dependent broadband noise stimulation in sensory and motor cortices of rat. In response to such stimuli, we found increased temporal spike-time reliability. The information transmission properties reveal, both experimentally and theoretically, that the neurons support high-frequency stimulation beyond the inverse membrane time. Generating a stimulus using the neuron's response properties, we could evoke prescribed spike times with high precision. Our work helps to establish a novel method for precise temporal control of single-cell spiking and provides a simplified biophysical description of single-neuron spiking under time-dependent in vivo-like stimulation.
机译:在大鼠的运动皮层和体感皮层中的单细胞通过在细胞附近施加的宽带波动电流在体内被刺激。与以前使用的DC电流阶跃不同,波动的刺激电流可靠地诱发了尖峰列,并具有各个尖峰的精确定时。波动的电流在超出倒膜时间常数和神经元平均放电率的刺激频率下导致强烈的细胞反应。神经元放电与高信息传递率相关,即使是刺激的高频成分也是如此。在正弦近细胞刺激的其他实验中也揭示了这种反应特征。对于选定的单元格,我们可以使用具有不同复杂性的间隔模型来重现这些统计信息。我们还开发了一种生成高斯刺激的方法,该方法可以在规定的尖峰时间(在一定速率和变异系数的约束下)唤起尖峰序列,并举例说明其在体内皮层神经元中实现精确可靠的尖峰的能力。我们的结果证明了一种新的方法,该方法可通过并发细胞刺激来精确控制穗时序,证实并扩展了有关皮层神经元产生精确放电的能力的离体研究的早期结论,并有助于对单个神经元信息传递的生物物理学的理解。 >意义声明体内单个识别的神经元的纳米刺激可以参数化地控制峰值频率,而且令人惊讶的是,甚至可以使动物的行为反应产生偏差。在这里,我们将这种刺激方案扩展到大鼠的感觉和运动皮层中的时间依赖性宽带噪声刺激。响应这种刺激,我们发现增加了时间尖峰时间可靠性。信息传输特性在实验和理论上都表明,神经元支持逆膜时间以外的高频刺激。利用神经元的响应特性生成刺激,我们可以高精度地引起规定的尖峰时间。我们的工作有助于建立一种新颖的方法来精确控制单细胞尖峰的时间,并在依赖时间的活体样刺激下提供单个神经元尖峰的简化生物物理描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号