首页> 美国卫生研究院文献>The Journal of Neuroscience >Temporal Integration of Cholinergic and GABAergic Inputs in Isolated Insect Mushroom Body Neurons Exposes Pairing-Specific Signal Processing
【2h】

Temporal Integration of Cholinergic and GABAergic Inputs in Isolated Insect Mushroom Body Neurons Exposes Pairing-Specific Signal Processing

机译:在孤立的昆虫蘑菇体神经元的胆碱能和GABA能输入的时间整合暴露配对特定信号处理。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

GABAergic modulation of neuronal activity plays a crucial role in physiological processes including learning and memory in both insects and mammals. During olfactory learning in honeybees (Apis mellifera) and Drosophila melanogaster the temporal relation between excitatory cholinergic and inhibitory GABAergic inputs critically affects learning. However, the cellular mechanisms of temporal integration of these antagonistic inputs are unknown. To address this question, we use calcium imaging of isolated honeybee and Drosophila Kenyon cells (KCs), which are targets of cholinergic and GABAergic inputs during olfactory learning. In the whole population of honeybee KCs we find that pairing of acetylcholine (ACh) and γ-aminobutyric acid (GABA) Comment: Please use the greek letter for gamma reduces the ACh-induced calcium influx, and depending on their temporal sequence, induces different forms of neuronal plasticity. After ACh–GABA pairing the calcium influx of a subsequent excitatory stimulus is increased, while GABA–ACh pairing affects the decay time leading to elevated calcium levels during the late phase of a subsequent excitatory stimulus. In an exactly defined subset of Drosophila KCs implicated in learning we find similar pairing-specific differences. Specifically the GABA–ACh pairing splits the KCs in two functional subgroups: one is only weakly inhibited by GABA and shows no neuronal plasticity and the other subgroup is strongly inhibited by GABA and shows elevated calcium levels during the late phase of a subsequent excitatory stimulus. Our findings provide evidence that insect KCs are capable of contributing to temporal processing of cholinergic and GABAergic inputs, which provides a neuronal mechanism of the differential temporal role of GABAergic inhibition during learning.
机译:GABA能调节神经元活性在昆虫和哺乳动物的生理过程(包括学习和记忆)中起着至关重要的作用。在蜜蜂(Apis mellifera)和果蝇果蝇的嗅觉学习过程中,兴奋性胆碱能和抑制性GABA能输入之间的时间关系严重影响学习。但是,这些拮抗输入的时间整合的细胞机制尚不清楚。为了解决这个问题,我们使用分离的蜜蜂和果蝇Kenyon细胞(KCs)的钙成像,它们是嗅觉学习过程中胆碱能和GABA能输入的目标。在整个蜜蜂KC种群中,我们发现乙酰胆碱(ACh)和γ-氨基丁酸(GABA)配对注释:请对希腊字母使用γ来减少ACh诱导的钙内流,并取决于它们的时间顺序,诱导出不同的形式的神经元可塑性。在ACh-GABA配对后,随后的兴奋性刺激的钙内流增加,而GABA-ACh配对影响衰减时间,导致在随后的兴奋性刺激的后期钙水平升高。在果蝇中与学习相关的果蝇KC的一个精确定义的子集中,我们发现相似的配对特异性差异。特别是,GABA-ACh配对将KCs分为两个功能亚组:一个仅受到GABA的弱抑制,并且没有神经元可塑性,另一个亚组受到GABA的强烈抑制,并且在随后的兴奋性刺激的后期显示钙水平升高。我们的发现提供了证据,表明昆虫KC能够促进胆碱能和GABA能输入的时间过程,从而为学习过程中GABA能抑制的不同时空作用提供了一种神经元机制。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号