首页> 美国卫生研究院文献>The Journal of Neuroscience >Motor Circuit-Specific Burst Patterns Drive Different Muscle and Behavior Patterns
【2h】

Motor Circuit-Specific Burst Patterns Drive Different Muscle and Behavior Patterns

机译:电机电路特定的突发模式驱动不同的肌肉和行为模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the isolated CNS, different modulatory inputs can enable one motor network to generate multiple output patterns. Thus far, however, few studies have established whether different modulatory inputs also enable a defined network to drive distinct muscle and movement patterns in vivo, much as they enable these distinctions in behavioral studies. This possibility is not a foregone conclusion, because additional influences present in vivo (e.g., sensory feedback, hormonal modulation) could alter the motor patterns. Additionally, rhythmic neuronal activity can be transformed into sustained muscle contractions, particularly in systems with slow muscle dynamics, as in the crab (Cancer borealis) stomatogastric system used here. We assessed whether two different versions of the biphasic (protraction, retraction) gastric mill (chewing) rhythm, triggered in the isolated stomatogastric system by the modulatory ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons, drive different muscle and movement patterns. One distinction between these rhythms is that the lateral gastric (LG) protractor motor neuron generates tonic bursts during the VCN rhythm, whereas its POC-rhythm bursts are divided into fast, rhythmic burstlets. Intracellular muscle fiber recordings and tension measurements show that the LG-innervated muscles retain the distinct VCN-LG and POC-LG neuron burst structures. Moreover, endoscope video recordings in vivo, during VCN-triggered and POC-triggered chewing, show that the lateral teeth protraction movements exhibit the same, distinct protraction patterns generated by LG in the isolated nervous system. Thus, the multifunctional nature of an identified motor network in the isolated CNS can be preserved in vivo, where it drives different muscle activity and movement patterns.
机译:在隔离的CNS中,不同的调制输入可以使一个电动机网络生成多个输出模式。然而,到目前为止,很少有研究确定不同的调节输入是否也能使一个定义的网络在体内驱动不同的肌肉和运动模式,就像它们在行为研究中实现了这些区别一样。这种可能性并非已成定局,因为体内存在其他影响(例如,感觉反馈,激素调节)可能会改变运动模式。另外,节律性神经元活动可以转化为持续的肌肉收缩,特别是在肌肉动力学缓慢的系统中,例如此处使用的螃蟹(北极蟹)气孔胃系统。我们评估了由调制腹心神经元(VCN)和食管后连合(POC)神经元在孤立的胃造口系统中触发的两种不同版本的双相(牵引,收缩)胃磨(咀嚼)节律是否驱动了不同的肌肉和运动模式。这些节律之间的区别是,外侧胃(LG)量角器运动神经元在VCN节律期间会产生强直性阵发,而其POC节律阵发又分为快速的有节律的阵发。细胞内肌纤维记录和张力测量表明,LG神经支配的肌肉保留了独特的VCN-LG和POC-LG神经元爆发结构。此外,在VCN触发和POC触发的咀嚼过程中,体内的内窥镜视频记录显示,侧牙牵引运动表现出LG在孤立的神经系统中产生的相同,独特的牵引模式。因此,分离的CNS中所识别的运动网络的多功能性质可以在体内保存,其驱动不同的肌肉活动和运动模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号