首页> 美国卫生研究院文献>The Journal of Neuroscience >Synaptic Regulation of Microtubule Dynamics in Dendritic Spines by Calcium F-Actin and Drebrin
【2h】

Synaptic Regulation of Microtubule Dynamics in Dendritic Spines by Calcium F-Actin and Drebrin

机译:钙F-肌动蛋白和Drebrin突触调节树突棘的微管动力学。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dendritic spines are actin-rich compartments that protrude from the microtubule-rich dendritic shafts of principal neurons. Spines contain receptors and postsynaptic machinery for receiving the majority of glutamatergic inputs. Recent studies have shown that microtubules polymerize from dendritic shafts into spines and that signaling through synaptic NMDA receptors regulates this process. However, the mechanisms regulating microtubule dynamics in dendrites and spines remain unclear. Here we show that in hippocampal neurons from male and female mice, the majority of microtubules enter spines from highly localized sites at the base of spines. These entries occur in response to synapse-specific calcium transients that promote microtubule entry into active spines. We further document that spine calcium transients promote local actin polymerization, and that F-actin is both necessary and sufficient for microtubule entry. Finally, we show that drebrin, a protein known to mediate interactions between F-actin and microtubules, acts as a positive regulator of microtubule entry into spines. Together these results establish for the first time the essential mechanisms regulating microtubule entry into spines and contribute importantly to our understanding of the role of microtubules in synaptic function and plasticity.
机译:树突棘是富含肌动蛋白的区室,从主要神经元的富含微管的树突轴突出。棘含有受体和突触后机制,用于接受大多数谷氨酸能输入。最近的研究表明,微管从树突状干聚合成棘突,并且通过突触NMDA受体发出的信号调节了这一过程。但是,尚不清楚调节树突和棘中微管动力学的机制。在这里,我们显示在雄性和雌性小鼠的海马神经元中,大多数微管从棘突底部高度定位的部位进入棘突。这些进入是响应于突触特异性钙瞬变而发生的,其促进微管进入活性棘突。我们进一步证明脊柱钙瞬变促进局部肌动蛋白聚合,并且F-肌动蛋白对于微管进入既是必需的又是足够的。最后,我们证明了drebrin,一种已知介导F-actin与微管之间相互作用的蛋白,可作为微管进入棘突的正向调节剂。这些结果在一起首次建立了调节微管进入棘突的基本机制,并为我们对微管在突触功能和可塑性中的作用的理解做出了重要贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号