首页> 美国卫生研究院文献>The Journal of Neuroscience >Submillisecond Firing Synchrony between Different Subtypes of Cortical Interneurons Connected Chemically But Not Electrically
【2h】

Submillisecond Firing Synchrony between Different Subtypes of Cortical Interneurons Connected Chemically But Not Electrically

机译:化学连接但不电气连接的皮质中间神经元的不同亚型之间的亚毫秒激发同步

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synchronous firing is commonly observed in the brain, but its underlying mechanisms and neurobiological meaning remain debated. Most commonly, synchrony is attributed either to electrical coupling by gap junctions or to shared excitatory inputs. In the cerebral cortex and hippocampus, fast-spiking (FS) or somatostatin-containing (SOM) inhibitory interneurons are electrically coupled to same-type neighbors, and each subtype-specific network tends to fire in synchrony. Electrical coupling across subtypes is weak or absent, but SOM–FS and FS–FS pairs are often connected by inhibitory synapses. Theoretical studies suggest that purely inhibitory coupling can also promote synchrony; however, this has not been confirmed experimentally. We recorded from 74 pairs of electrically noncoupled layer 4 interneurons in mouse somatosensory cortex in vitro, and found that tonically depolarized FS–FS and SOM–FS pairs connected by unidirectional or bidirectional inhibitory synapses often fired within 1 ms of each other. Using a novel, jitter-based measure of synchrony, we found that synchrony correlated with inhibitory coupling strength. Importantly, synchrony was resistant to ionotropic glutamate receptors antagonists but was strongly reduced when GABAA receptors were blocked, confirming that in our experimental system IPSPs were both necessary and sufficient for synchrony. Submillisecond firing lags emerged in a computer simulation of pairs of spiking neurons, in which the only assumed interaction between neurons was by inhibitory synapses. We conclude that cortical interneurons are capable of synchronizing both within and across subtypes, and that submillisecond coordination of firing can arise by mutual synaptic inhibition alone, with neither shared inputs nor electrical coupling.
机译:同步放电通常在大脑中观察到,但是其潜在的机制和神经生物学含义仍存在争议。最常见的是,同步归因于间隙连接的电耦合或共享的激励输入。在大脑皮层和海马中,快速加标(FS)或含生长抑素(SOM)的抑制性神经元与相同类型的邻居电耦合,并且每个特定于亚型的网络都倾向于同步发射。亚型之间的电耦合弱或不存在,但SOM–FS和FS–FS对通常通过抑制性突触连接。理论研究表明,纯抑制性偶联也可以促进同步。但是,这还没有通过实验得到证实。我们在体外从小鼠体感皮层中的74对电非耦合第4层神经元对进行了记录,发现通过单向或双向抑制性突触连接的声波去极化FS-FS和SOM-FS对通常在彼此之间1毫秒内发射。使用一种新颖的,基于抖动的同步度量,我们发现同步与抑制耦合强度相关。重要的是,同步性对离子型谷氨酸受体拮抗剂具有抗性,但是当GABAA受体被阻断时,同步性会大大降低,这证实了在我们的实验系统中IPSP对于同步性既必要又足够。亚秒级放电延迟出现在尖峰神经元对的计算机模拟中,其中唯一假定的神经元之间的相互作用是抑制性突触。我们得出的结论是,皮层神经元能够在亚型内和跨亚型进行同步,并且亚毫秒级的放电协调可能仅通过相互突触抑制而产生,既没有共享的输入也没有电耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号