首页> 美国卫生研究院文献>The Journal of Neuroscience >Efficacy Loss of the Anticonvulsant Carbamazepine in Mice Lacking Sodium Channel β Subunits via Paradoxical Effects on Persistent Sodium Currents
【2h】

Efficacy Loss of the Anticonvulsant Carbamazepine in Mice Lacking Sodium Channel β Subunits via Paradoxical Effects on Persistent Sodium Currents

机译:抗惊厥性卡马西平在缺乏钠通道β亚基的小鼠中的持久性钠电流的反常效应其功效丧失

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuronal excitability is critically determined by the properties of voltage-gated Na+ currents. Fast transient Na+ currents (INaT) mediate the fast upstroke of action potentials, whereas low-voltage-activated persistent Na+ currents (INaP) contribute to subthreshold excitation. Na+ channels are composed of a pore-forming α subunit and β subunits, which modify the biophysical properties of α subunits. We have examined the idea that the presence of β subunits also modifies the pharmacological properties of the Na+ channel complex using mice lacking either the β1 (Scn1b) or β2 (Scn2b) subunit. Classical effects of the anticonvulsant carbamazepine (CBZ), such as the use-dependent reduction of INaT and effects on INaT voltage dependence of inactivation, were unaltered in mice lacking β subunits. Surprisingly, CBZ induced a small but significant shift of the voltage dependence of activation of INaT and INaP to more hyperpolarized potentials. This novel CBZ effect on INaP was strongly enhanced in Scn1b null mice, leading to a pronounced increase of INaP within the subthreshold potential range, in particular at low CBZ concentrations of 10–30 μm. A combination of current-clamp and computational modeling studies revealed that this effect causes a complete loss of CBZ efficacy in reducing repetitive firing. Thus, β subunits modify not only the biophysical but also the pharmacological properties of Na+ channels, in particular with respect to INaP. Consequently, altered expression of β subunits in other neurological disorders may cause altered neuronal sensitivity to drugs targeting Na+ channels.
机译:神经元的兴奋性由电压门控Na + 电流的特性决定。快速瞬态Na + 电流(INaT)介导动作电位的快速上冲,而低压激活的持续Na + 电流(INaP)导致亚阈值激发。 Na + 通道由成孔的α亚基和β亚基组成,它们改变了α亚基的生物物理特性。我们已经研究了使用缺乏β1(Scn1b)或β2(Scn2b)亚基的小鼠,β亚基的存在还修饰Na + 通道复合物的药理特性的想法。在缺少β亚基的小鼠中,抗惊厥性卡马西平(CBZ)的经典作用,如INaT的使用依赖性减少和灭活对INaT电压依赖性的影响,并未改变。出人意料的是,CBZ引起INaT和INaP激活的电压依赖性向较小的超极化电位微小但显着转移。在Scn1b无效小鼠中,这种新颖的CBZ对INaP的作用得到了显着增强,导致在亚阈值电位范围内,特别是在10-30μm的低CBZ浓度下,INaP明显增加。电流钳和计算模型研究的结合表明,这种效应导致CBZ在减少重复点火方面的功效完全丧失。因此,β亚基不仅会改变Na + 通道的生物物理特性,而且会改变其药理特性,尤其是对于INaP。因此,在其他神经系统疾病中,β亚基表达的改变可能导致对Na + 通道药物的神经元敏感性改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号