首页> 美国卫生研究院文献>The Journal of Neuroscience >Neuronal Substrates for State-Dependent Changes in Coordination between Motoneuron Pools during Fictive Locomotion in the Lamprey Spinal Cord
【2h】

Neuronal Substrates for State-Dependent Changes in Coordination between Motoneuron Pools during Fictive Locomotion in the Lamprey Spinal Cord

机译:神经元底物在南rey鳗脊髓的虚构运动过程中Motonuron池之间的协调状态的依赖变化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Locomotion relies on a precisely timed activation of sets of motoneurons. A fundamental question is how this is achieved. In the lamprey, fin and myotomal motoneurons located on the same side of the spinal cord display alternating activity during straight swimming. The neural mechanism underlying this alternation is studied here during fictive locomotion induced by superfusion with NMDA, or locomotor bursting induced by electrical stimulation. If the spinal cord is split longitudinally, each hemicord still displays rhythmic locomotor related burst activity, but now fin and myotomal motoneurons become active in-phase. The out-of-phase activation of fin motoneurons persists only when at least three segments are left intact in the rostral part of the spinal cord. Proper coordination of fin motoneurons thus requires input from contralateral rostral segments. We show that commissural excitatory interneurons with long descending axons, previously reported to be active in phase with their ipsilateral myotomal motoneurons, provide monosynaptic excitation to contralateral fin motoneurons. Together, these results strongly indicate that, although myotomal motoneurons receive their phasic excitation from ipsilateral excitatory interneurons, fin motoneurons are mainly driven from the contralateral segmental network during bilateral locomotor activity. However, during unilateral bursting, fin and myotomal motoneurons instead receive a common input, which is apparently masked during normal fictive swimming. The spinal organization thus also provides circuitry for different patterns of coordination, i.e., alternation or coactivation of the two pools of motoneurons, which may subserve different forms of locomotor behavior.
机译:运动依赖于一组精确的运动神经元的激活。一个基本的问题是如何实现这一目标。在七rey鳗中,位于脊髓同一侧的鳍和肌动神经元在直泳期间表现出交替的活动。在此过程中,研究了这种交替变化背后的神经机制,该过程是通过与NMDA融合引起的虚构运动或由电刺激引起的运动爆发。如果脊髓是纵向分裂的,那么每个半球仍然显示出与节奏性运动相关的爆发活动,但是现在鳍和肌动神经元同相活跃。鳍运动神经元的异相激活仅在脊髓的前额部分保留至少三个部分完整时才持续。因此,鳍运动神经元的正确协调需要来自对侧鼻端节段的输入。我们显示连合兴奋性中间神经元与长期下降的轴突,以前据报道与其同侧肌动神经元同相活跃,向单侧鳍运动神经元提供单突触兴奋。在一起,这些结果强烈表明,尽管肌运动神经元从同侧兴奋性中神经元获得其相位激励,但鳍运动神经元在双边运动活动中主要由对侧节段网络驱动。但是,在单侧爆发期间,鳍和肌运动神经元取而代之的是接​​收共同的输入,这在正常的虚拟游泳中显然被掩盖了。因此,脊柱组织还提供了用于不同协调模式的电路,即,运动神经元的两个池的交替或共激活,其可以适应不同形式的运动行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号