首页> 美国卫生研究院文献>The Journal of Neuroscience >Intrinsic and Synaptic Dynamics Interact to Generate Emergent Patterns of Rhythmic Bursting in Thalamocortical Neurons
【2h】

Intrinsic and Synaptic Dynamics Interact to Generate Emergent Patterns of Rhythmic Bursting in Thalamocortical Neurons

机译:内在和突触动力学相互作用以产生丘脑皮质神经元节律性爆发的新兴模式。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rhythmic inhibition entrains the firing of excitatory neurons during oscillations throughout the brain. Previous work has suggested that the strength and duration of inhibitory input determines the synchrony and period, respectively, of these oscillations. In particular, sleep spindles result from a cycle of events including rhythmic inhibition and rebound bursts in thalamocortical (TC) neurons, and slowing and strengthening this inhibitory input may transform spindles into spike-wave discharges characteristic of absence epilepsy. Here, we used dynamic clamp to inject TC neurons with spindle-like trains of IPSCs and studied how modest changes in the amplitude and/or duration of these IPSCs affected the responses of the TC neurons. Contrary to our expectations, we found that prolonging IPSCs accelerates postinhibitory rebound (PIR) in TC neurons, and that increasing either the amplitude or duration of IPSCs desynchronizes PIR activity in a population of TC cells. Tonic injection of hyperpolarizing or depolarizing current dramatically alters the timing and synchrony of PIR. These results demonstrate that rhythmic PIR activity is an emergent property of interactions between intrinsic and synaptic currents, not just a passive reflection of incoming synaptic inhibition.
机译:节律性抑制会在整个大脑振荡期间引起兴奋性神经元的放电。先前的工作表明抑制性输入的强度和持续时间分别决定了这些振荡的同步性和周期。特别是,睡眠纺锤体是由一系列事件引起的,包括节律抑制和丘脑皮质(TC)神经元的反弹爆发,并且减慢和加强这种抑制性输入可能会将纺锤体转变成无癫痫病特征的尖峰波放电。在这里,我们使用动态钳位向TC神经元注入了类似纺锤状的IPSC,并研究了这些IPSC振幅和/或持续时间的适度变化如何影响TC神经元的反应。与我们的预期相反,我们发现延长IPSC会加速TC神经元的抑制后反弹(PIR),而增加IPSC的幅度或持续时间会使TC细胞群中的PIR活性失去同步。强极化或去极化电流的强力注入会极大地改变PIR的时序和同步性。这些结果表明节律的PIR活性是内在和突触电流之间相互作用的一种新兴特性,而不仅仅是传入突触抑制的被动反映。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号