首页> 美国卫生研究院文献>The Journal of Neuroscience >High Conductance Sustained Single-Channel Activity Responsible for the Low-Threshold Persistent Na+ Current in Entorhinal Cortex Neurons
【2h】

High Conductance Sustained Single-Channel Activity Responsible for the Low-Threshold Persistent Na+ Current in Entorhinal Cortex Neurons

机译:高电导的单通道活动负责内嗅皮层神经元的低阈值持久性Na +电流

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stellate cells from entorhinal cortex (EC) layer II express both a transient Na+ current (INa) and a low-threshold persistent Na+ current (INaP) that helps to generate intrinsic theta-like oscillatory activity. We have used single-channel patch-clamp recording to investigate the Na+ channels responsible forINaP in EC stellate cells. Macropatch (more than six channels) recordings showed high levels of transient Na+ channel activity, consisting of brief openings near the beginning of depolarizing pulses, and lower levels of persistent Na+ channel activity, characterized by prolonged openings throughout 500 msec long depolarizations. The persistent activity contributed a noninactivating component to averaged macropatch recordings that was comparable with whole-cellINaP in both voltage dependence of activation (10 mV negative to the transient current) and amplitude (1% of the transient current at −20 mV). In 14 oligochannel (less than six channels) patches, the ratio of transient to persistent channel activity varied from patch to patch, with 10 patches exhibiting exclusively transient openings and one patch showing exclusively persistent openings. In two patches containing only a single persistent channel, prolonged openings were observed in >50% of test depolarizations. Moreover, persistent openings had a significantly higher single-channel conductance (19.7 pS) than transient openings (15.6 pS). We conclude that this stable high-conductance persistent channel activity is responsible for INaP in EC stellate cells. This persistent channel behavior is more enduring and has a higher conductance than the infrequent and short-lived transitions to persistent gating modes that have been described previously in brain neurons.
机译:来自内嗅皮质(EC)第II层的星状细胞表达瞬时Na + 电流(INa)和低阈值持续性Na + 电流(INaP)固有的类似于θ的振荡活动。我们已经使用单通道膜片钳记录来研究负责EC星状细胞中INaP的Na + 通道。 Macropatch(超过六个通道)记录显示出高水平的瞬时Na + 通道活性,包括去极化脉冲开始时的短暂开口和较低水平的持久性Na + 通道活动,其特征是在整个500毫秒长的去极化过程中开口时间延长。持续的活动为平均宏块记录贡献了非灭活成分,在激活的电压依赖性(对瞬态电流为负的10 mV)和幅度(在-20 mV时占瞬态电流的1%)方面,其平均灭活成分与全细胞INaP相当。在14个寡通道(少于6个通道)补丁中,瞬态与持久性通道活动的比率因补丁而异,其中10个斑块仅显示瞬态开口,而一个斑块仅显示持久性开口。在仅包含一个持续通道的两个贴片中,在> 50%的测试去极化中观察到延长的开口。此外,持久性开口的单通道电导(19.7 pS)明显高于瞬态开口(15.6 pS)。我们得出的结论是,这种稳定的高电导持久性通道活性是EC星状细胞中INaP的原因。与先前在脑神经元中描述的向永久门控模式的不频繁和短暂过渡相比,这种持续的通道行为更加持久并且具有更高的电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号